European Polymer Journal, 1967, Vol. 3, pp. 33-42. Pergamon Press Ltd. Printed in England.

550

THE CRYSTAL STRUCTURE OF TRANS POLYALKENAMERS

G. NATTA and I. W. BASSI

Istituto di Chimica Industriale del Politecnico di Milano

THE CRYSTAL STRUCTURE OF TRANS POLYALKENAMERS

G. NATTA and I. W. BASSI

Istituto di Chimica Industriale del Politecnico di Milano and Istituto Ricerche "G. Donegani", Società Montecatini-Edison, Milano

(Received 3 August 1966)

Abstract—The structure of crystalline *trans* polyheptenamer [—CH—CH—(CH₂)₅—]_n has been determined by the X-ray diffraction spectra given by cold drawn fibres. The fibre repeat is 17·10 Å and comprises two chemical units. The unit cell is orthorhombic, with two chains per cell. The cell dimensions are: a=7.40 Å; b=5.00 Å; c=17.10 Å; space group D_{26}^{16} (P n a m).

The a and b axes and the packing of the chains of trans polyheptenamer are very similar to those found for crystalline trans polypentenamer [—CH—CH—(CH₂)₃—]_n and for orthorhombic polyethylene.

The carbon atoms of the polymeric chain lie on two separate planes, running parallel to the chain axis. A different crystalline modification of *trans* polyheptenamer has been observed in some i.r. spectra.

INTRODUCTION

LINEAR high polymers derived from a head-to-tail arrangement of [—CH—CH— $(CH_2)_n$ —] units, were synthesized in our laboratories, by ring cleavage of several cyclo-olefins. The linear polyalkenamers, obtained by stereospecific catalysts leading to polymers having a *trans* double bonds content higher than 80 per cent of the total amount of double bonds, are highly crystalline by X-ray examination. The *trans* polyalkenamers obtained in our laboratories differ between one another because of the different number of methylene groups between two successive double bonds; they constitute a homologous series, the first member of which is polyacetylene and the last is polyethylene.

From their fibre spectra, we may place the members of the homologous series of trans polyalkenamers into two classes depending on whether the number of carbon atoms of the starting cyclo-olefin is even or odd. While the fibre axis of the even trans polyalkenamers, examined hitherto, comprises only one chemical repeating unit, in the odd members the identity period along the chain axis is achieved with two chemical repeating units.

The behaviour of melting temperatures and the polymorphism phenomena shown by the odd and even members of the homologous series of *trans* polyalkenamers have been thoroughly described in a previous paper. (2)

The two crystalline forms shown by odd *trans* polyalkenamers have been previously denoted by us as modifications I and II while the two crystalline forms of even *trans* polyalkenamers have been denoted as modifications III and IV. In order to avoid the interpretation that any *trans* polyalkenamer could show four different crystalline

forms, it seems better to substitute the term "modification" for the term "structure". Odd trans polyalkenamers may be crystallized into two forms corresponding to structure I and structure II of trans polyalkenamers. Even trans polyalkenamers may be crystallized into two forms corresponding to structure III and structure IV of trans polyalkenamers.

We wish to point out here that the odd trans polyalkenamers show, at least under the conditions examined by us, only one crystalline form (structure I of trans polyalkenamers). The X-ray diffraction spectra given by this crystalline form of odd trans polyalkenamers are very similar to the X-ray photographs given by orthorhombic polyethylene. Actually the $(h \ k \ 0)$ reflections of these polymers have the same Bragg distances as the $(h \ k \ 0)$ reflections of orthorhombic polyethylene and a great similarity in the X-ray spectra is shown also in a comparison of their relative intensities.

There is some evidence of a different crystalline form of odd *trans* polyalkenamers (structure II of *trans* polyalkenamers) from the presence of some i.r. absorption bands in specially treated *trans* polyheptenamers.

The even members of the homologous series of *trans* polyalkenamers are clearly polymorphous by X-ray examination. The X-ray diffraction spectra of one of the crystalline forms (structure III of *trans* polyalkenamers) in which even *trans* polyalkenamers crystallize, are similar to those given by polymethylene subjected to particular mechanical treatments⁽³⁾ and to those given by even n-alkanes.⁽⁴⁾

The X-ray diffraction spectra of the other crystalline form (structure IV of trans polyalkenamers) shown by even trans polyalkenamers are in some way similar to that of orthorhombic polyethylene.

Crystallization from the melt of even *trans* polyalkenamers predominantly leads to structure III or to structure IV of *trans* polyalkenamers depending on the number of methylene groups between two successive double bonds.

This paper describes the crystal structure of *trans* polyheptenamer crystallized in structure I and in a subsequent paper we shall report the crystal structure of *trans* polydodecenamer crystallized in structure IV.

CRYSTAL STRUCTURE OF TRANS POLYHEPTENAMER

Modification with the structure I of trans polyalkenamers

Fibres of trans polyheptenamer [—CH—CH—(CH₂)₅—]_n having a good degree of crystallinity and a good orientation of crystallites can be obtained by annealing, under tension at $\sim 40^{\circ}$, cold drawn fibres of the polymer. The X-ray fibre photographs were taken with a cylindrical camera and Cu(K α) or Fe(K α) radiations.

The measured chain repeat is $17 \cdot 10 \pm 0 \cdot 15$ Å and the diffraction data fit an orthorhombic unit cell. The dimensions of the unit cell in Ångström units are: $a = 7 \cdot 40 \pm 0 \cdot 10$; $b = 5 \cdot 00 \pm 0 \cdot 05$; $c = 17 \cdot 10 \pm 0 \cdot 15$ (chain axis) $Z = 4(C_7H_{12})$; $d = 1 \cdot 049$ g/cm³.

The diffraction photographs show the absence of $(h \ 0 \ l)$ reflections when $h \neq 2n$ and of the $(0 \ k \ l)$ reflections when $k+l \neq 2n$. The most probable space groups are C_{2V}^9 (P n a 2_1) or its centrosymmetrical D_{2h}^{16} (P n a m) (5).

We wish to point out that the unit cells of *trans* polypentenamer⁽⁶⁾ and of orthorhombic polyethylene⁽⁷⁾ are characterized by analogous figures for the a and b axes and by the same space groups (polyethylene a=7.40, b=4.93 Å; *trans* polypentenamer a=7.28, b=4.97 Å).

Conformation of the macromolecule of trans polyheptenamer

The fibre axis of *trans* polyheptenamer comprises two chemical repeating units and is $17\cdot10\pm0\cdot15$ Å. The calculated identity period based on a planar zig-zag chain conformation and the generally accepted bond lengths and angles is $17\cdot50$ Å. The difference between the observed and calculated identity periods can be fully explained by the fact that the internal rotation angles about the single bonds adjacent to a *trans* double bond tend to assume the values of $180^{\circ}\pm60^{\circ}$ and $180^{\circ}\mp60^{\circ}$ respectively. This occurrence has been seen in the case of several polymers containing *trans* double bonds in the main chain. (6, 8)

The shortenings of the chain axes of trans polypentenamer [—CH—CH— $(CH_2)_3$ —]_n⁽⁶⁾ and of trans polyheptenamer in respect of the repeats based on planar zig-zag conformations are practically the same (0.5 Å); this suggests that the part of the chain involved in the shortening is the same for both polymers. This hypothesis is also supported by the great similarity between the X-ray diffraction spectra given by trans polypentenamer and trans polyheptenamer. The difference (5.1 Å) between the experimental fibre repeats of these two polymers $(12.00\pm0.10 \text{ Å for trans polypentenamer})$ also consistent with the hypothesis of a planar zig-zag part of the chain running parallel to the fibre axis.

On the basis of the remarks above, the chain conformation of crystalline *trans* polyheptenamer is quite similar to the chain conformation, already known, of crystalline *trans* polypentenamer. (6) As in the case of this last polymer, in accordance with the P n a m space group, (5) the macromolecule of *trans* polyheptenamer assumes in the crystal state $S(2_1)m$ symmetry. (9) Repetition is achieved after two chemical repeating units connected by a twofold screw axis running parallel to the chain axis. There are also symmetry centres on each double bond and two mirror planes (0, 0, 1/4) and (0, 0, 3/4) (Fig. 1).

As can be seen from Fig. 1, the carbon atoms of the *trans* polyheptenamer macromolecule, in the crystal state, lie on two parallel planes. These two planes run parallel to the fibre axis and are conjuncted by the *trans* double bonds.

The agreement between the calculated identity period and the fibre axis can be achieved in two different ways. The calculated repeat is 17.00 Å when the C—Ĉ—C and C—Ĉ—C bond angles are 112° and 123° respectively and the internal rotation angles around the single bonds adjacent to a double bond are 120° and 240° respectively (C—C=1.54 Å, C—C=1.34 Å).

The same result may be achieved also by assuming the bond angles C— \hat{C} —C and C— \hat{C} —C 110° and 120° respectively, while the internal rotation angles above mentioned are brought to 130° and 230°.

A choice between the two models does not seem possible, therefore we have carried out the structure determination taking into account both possibilities.

Determination of the crystal structure of trans polyheptenamer

As in the case of *trans* polypentenamer the space group, the unit cell dimensions and the chain conformation suggest that the *trans* polyheptenamer macromolecules are packed side by side in much the same way as in orthorhombic polyethylene.

Actually, also in the case of *trans* polyheptenamer, the shortest Van der Waals' intermolecular distances have the usual values (~ 4.2 Å between carbon atoms and ~ 2.5 Å between hydrogen atoms) when the ϕ angle between the c axis and the two

Fig. 1. Side and end views of the macromolecules of *trans* polyheptenamer in the crystalline state (symmetry S (2/1)m; the internal rotation angles on the single bonds adjacent to the double bonds are 130° and 230°).

Fig. 2. Projection on the (001) plane of the structure of *trans* polyheptenamer. Some of the most significant Van der Waals' distances are indicated (open circles, C atoms, full circles H atoms).

Fig. 3. Projection on the (010) plane of the structure of trans polyheptenamer.

parallel planes containing the zig-zag C atoms, reaches a value of about 40° (Fig. 2); the ϕ angle in the case of orthorhombic polyethylene is $41\cdot2^{\circ}$, and in the case of trans polypentenamer $\phi = 40\cdot8^{\circ}$.

Similar orientations, in respect to the a and b axes of the unit cell, of the paraffinic planar part of the chain of molecules containing rather long methylene sequences have been found for many substances.

The closest packing between molecules containing planar methylene sequences is achieved when the H atoms of the CH₂ groups from one molecule enter the depressions between three H atoms in an adjacent molecule. As shown by the studies of A. I. Kitaigorodskii on the close packing of long aliphatic chains, ⁽⁴⁾ the fulfilment of the previous condition fully explains the values of unit cell axes, the symmetry of the packing and the orientation of the molecules of orthorhombic polyethylene and of odd paraffins. Also in the case of *trans* polyheptenamer this condition is fulfilled; in fact, as we can see from Figs. 2 and 3, each hydrogen atom is located in the depression between three hydrogen atoms of an adjacent molecule.

Starting from these considerations we have made the calculations of the structure factors on the basis of the P n a m space group for both the macromolecule models above described and for some different values of the ϕ angle about the mean value of 40° . In the calculations of the structure factors, we have taken into account also hydrogen atoms (C—H=1.08 Å, C—Ĉ—H=109°28′, H—Ĉ—H=109°28′).

The comparison between calculated and observed structure factors is satisfactory when $\phi = 41^{\circ}$ for both models. The choice between the two postulated models can be done with difficulty also on the basis of the agreement between F_c and F_0 . However, we wish to point out that the reliability factor being the same for both the tested models,

$$R = \frac{\sum \left| |F_{\rm c}| - |F_{\rm 0}| \right|}{\sum |F_{\rm 0}|}$$

the model characterized by internal rotation angles of 130° and 230° around the single bonds adjacent to the double bonds, leads to an agreement between the calculated and observed structure factors that is slightly better than that achievable by the other model.

The figures of 230° and 130° of the internal rotation angles around the single bonds adjacent to a trans double bond have been accepted by us, on the basis of analogous reasonings, in the case of *trans* polypentenamer; (6) analogous figures have been found also in the case of crystalline dihydromuconic acid. (10)

TABLE 1. ATOMIC CO-ORDINATES OF THE ASYMMETRIC UNIT OF CRYSTALLINE *trans* POLYHEPTENAMER

	$x/a.10^4$	$y/b.10^4$	$z/c.10^4$
C_1	372	775	278
C_2	1166	9430	1016
C_3	372	775	1762
$1/2 C_4$	1166	9430	2500
\mathbf{H}_1	372	2950	251
H_2	2635	9700	1016
$H_2^{-\prime}$	811	7325	1016
H_3	736	2850	1762
$\ddot{\mathbf{H_{3}'}}$	8953	490	1762
$1/2 H_4$	2635	9700	2500
1/2 H ₄ '	811	7325	2500

Table 2. Comparison between the observed and calculated structure factors for transpolyheptenamer. Calculated and observed Bragg distances are also reported. $B=4\cdot6~{\rm \AA}^2$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		·				7.5					
200 3-70 3-70 72-4 63-7 611 1-19 — 141 1-14 (4-4) 210 2-98 2-95 4-1 7-0 241 1-18 — 0-2 1 1-4 (4-4) 220 2-50 2-51 51-6 49-4 341 1-11 8-1 120 2-37 2-36 9-3 7-6 531 1-11 1-10 0-4 8-2 ddd 110 2-22 2-19 10-3 14-6 621 1-11 1-12 220 2-07 2-07 14-0 18-4 400 1-85 1-83 4-1 ddd 410 1-74 3-2 9-8 10-8 202 3-40 3-36 10-8 6-2 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 63 130 1-63 1-63 11-9 1-8 1-8 (3-6) 2-22 2-02 - 2-3 (2-3) (2-3) 130 1-63 1-63 11-9 1-8 8 (3-6) 12-2 2-16 2-14 6-8 5-7 130 1-12 1-20 1-24 1-22 1-26 15-4 15-5 9-6 322 1-72 - 2-3 (3-4) 4-8 1 1-10 1-20 1-24 1-22 9-5 11-1 9-9 132 1-56 - 0-5 (2-9) 140 1-23 3-1 23 1-16 1-20 1-20 1-20 1-20 1-20 1-20 1-20 1-20	hkl	$d_{ m c}$	d_0	$F_{\mathbf{c}}$	F_0	· .	hkl	d_{c}	d_0	$F_{\mathbf{c}}$	F_0
200 3.70 3.70 72.4 63.7 611 1.19 — 1.44 (4.4) 210 2.98 2.95 2.51 51.6 49.4 341 1.11 8.1 310 2.237 2.36 9.3 7.6 531 1.11 1.10 0.4 8.2 ddd 310 2.22 2.19 10.3 14.6 621 1.11 1.10 1.2 220 2.07 2.07 14.0 18.4 400 1.85 1.83 4.1 410 1.74 3.2 3.4 4.1 410 1.74 3.2 3.2 3.4 4.1 410 1.74 3.2 3.2 3.4 4.1 410 1.74 3.2 3.2 4.9 5.3 0.22 2.40 — 1.7 (1.5) 320 1.75 1.74 9.3 9.8 10.8 202 3.40 3.36 10.8 62 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 63 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 63 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 63 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 63 130 1.21 1.52 1.52 1.52 4.9 5.3 0.22 2.40 — 1.7 (1.9) 420 1.49 — 3.8 (3.4) 122 2.28 2.27 4.1 7.9 510 1.42 1.40 6.3 5.7 312 2.16 2.14 6.8 5.7 330 1.18 — 1.8 (3.6) 222 2.02 — 2.3 (2.3) 520 1.28 1.54 1.55 9.6 402 1.81 1.81 8.3 9.9 600 1.24 4.8 412 1.70 — 2.5 4.9 (2.9) 140 1.23 3.1 600 1.24 1.22 9.5 11.1 9.9 132 1.56 — 0.5 (2.9) 140 1.23 3.1 600 1.24 1.22 9.5 11.1 9.9 132 1.56 — 0.5 (2.9) 140 1.23 3.1 600 1.14 1.20 9.5 11.1 9.9 132 1.56 — 0.5 (2.9) 140 1.20 1.11 — 0.9 10.6 11.4 ddd 512 1.40 — 3.2 (3.1) 340 1.12 — 0.2 1.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	110	4.15	4.18	101.4	123.7		601	1.23		0.4 11.3	444
200 2-98 2-95 4-1 7-0 241 1-18	200	3.70	3.70	72.4	63.7					1.4)	
120 2-37 2-36 9-3 7-6 49-4 341 1-11 1-10 0-4 8-2 ddd 310 2-22 2-19 10-3 14-6 621 1-11 1-10 0-4 8-2 400 1-85 1-83 4-1 ddd 410 1-74 1-74 3-2 3-2 320 1-75 1-74 9-3 9-8 10-8 202 3-40 3-36 10-8 6-2 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 6-3 130 1-63 1-63 11-9 14-6 212 2-81 2-83 5-0 6-3 230 1-52 1-52 4-9 5-3 022 2-40 1-7 (1-9) 420 1-49 3-8 (3-4) 122 2-28 2-27 4-1 7-0 420 1-49 3-8 (3-6) 222 2-62 2-3 (2-3) 520 1-28 1-26 2-1 15-5 9-6 322 1-72 4-3 4-9 600 1-24 4-8 412 1-70 2-5 4-9 600 1-24 4-8 412 1-70 2-5 4-9 600 1-24 1-22 9-5 11-1 9-9 132 1-56 0-5 (2-9) 440 1-13 3-1 2- 0-2 610 1-20 4-1 1-1 0-9 4-1 1-1 0-9 440 1-10 0-9 4-1 1-1 0-9 440 1-10 0-9 4-1 1-1 0-9 620 1-11 0-9 042 1-24 1-3 1-9 630 0-99 0-99 13-9 19-1 ddd 013 3-76 1-6 (1-8) 810 0-91 4-0 (3-5) 3-1 4-9 3-1 3-9 540 0-96 0-96 3-7 10-1 ddd 013 3-76 1-6 (1-8) 810 0-91 4-0 (3-5) 3-1 3-9 1-76 1-74 6-3 ddd 621 1-75 1-75 1-75 1-75 ddd 3-1 1-76 1-74 6-3 ddd 621 1-75 1-75 1-75 1-75 ddd 3-1 1-76 1-77 3-77										0.2 1.4	(4.4)
120										8.17	
310 2:22 2:19 10·3 14·6 621 1·11 1·2] 3 decomposed and series are series as a series are series are series as a series are series as a series are series are series as a series as a series are series as a series as a series are series as a series are series as a series ase									1.10	0.4 6.2	444
220 2-07 2-07 14-0 18-4 400 1-85 1-83 4-1 ddd 410 1-74 1-74 3-2 3-2 3-2 3-2 3-4 3-36 1-75 (1-5) 320 1-75 1-74 3-2 3-2 3-2 3-4 3-36 1-75 (1-5) 320 1-75 1-74 3-2 3-2 3-2 3-4 3-36 1-75 (1-5) 3-2 3-2 3-2 3-4 3-36 1-75 (1-5) 3-2 3-2 3-4 3-36 3-36 3-37 3-2									110		aaa
400 1.85 1.83 4-1 ddd 410 1.74 3.2] 9.8 10.8 202 3.40 3.36 10.8 6.2 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 6.3 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 6.3 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 6.3 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 6.3 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 6.3 130 1.63 1.63 11.9 14.6 212 2.81 2.83 5.0 6.3 130 1.63 1.83 3.8 (3.4) 122 2.28 2.27 4-1 7.0 1510 1.42 1.40 6.3 5.7 312 2.16 2.14 6.8 5.7 130 1.38 1.8 (3.6) 222 2.02 2.3 (2.3) 1.38 1.8 (3.6) 2.22 2.02 2.3 (2.3) 1.38 1.25 1.26 15.4 15.5 9.6 402 1.81 1.81 8.3 9.9 140 1.25 1.26 2.1 1.5.5 9.6 322 1.72 4.3 4.9 4.9 140 1.23 3.1 1.9 9 132 1.56 0.5 (2.9) 140 1.23 3.1 1.9 9 132 1.56 0.5 (2.9) 140 1.23 3.1 1.9 4.1 1.4 ddd 4.22 1.47 2.5 (3.0) 140 1.12 0.2 3.1 1.4 ddd 4.2 1.47 2.5 (3.0) 140 1.12 0.2 3.2 1.30 4.0 (2.9) 150 1.11 3.5 3.6 (4.0) 5.2 1.26 1.2 (3.2) 150 1.11 3.5 3.6 (4.0) 5.2 1.26 1.2 (3.2) 150 1.11 3.5 3.9 (3.9) 432 1.23 1.8 1.4 1.9 (3.4) 150 0.99 7.8 602 1.22 1.5 3.2 (3.4) 150 0.99 7.8 602 1.21 0.6 602 1.21 0.6 602 1.21 0.6 602 1.21 0.6 602 1.21 0.6 602 1.21 0.6 602 1.21							021	1 11		1-23	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							***************************************				
1.75				2.27			112	3.74		1.7	(1.5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.74	9.3 > 9.8	10.8		202		3.36		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.63	11.9	14.6					5.0	6.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				4.0			022				
510 1.42 1.40 6:3 5:7 312 2:16 2:14 6:8 5:7 330 1:38 — 1:8 (3:6) 222 2:02 — 2:3 (2:3) 520 1:28 1:26 15:4 15:5 9:6 402 1:81 1:81 8:3 9:9 040 1:25 1:26 2:1 15:5 9:6 322 1:72 — 4:3 4:9 (2:6) 600 1:24 1:22 9:5 11:1 9:9 132 1:56 — 0:5 (2:9) 410 1:23 3:1 9:1 422 1:47 — 2:5 (3:0) 240 1:19 1:0 1:1 4:1 4:0 — 3:2 (3:1) 340 1:12 — 0:2 332 1:36 — 1:2 (3:2) 530 1:11 — 0:2 3:6 (4:0) 522 <td< td=""><td></td><td></td><td></td><td>3.8</td><td></td><td></td><td></td><td></td><td>2.27</td><td></td><td>7.0</td></td<>				3.8					2.27		7.0
1-8			1.40	6.3							5.7
128			1 70	1.8						2.3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 4					1.81	8.3	
1-24			1.26		9.6					4.27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.24			*						(2.6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.22	0.5 11.1	0.0					0.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.24	1.22	2.1	9.9						(2.0)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3.17							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.19	10.6 11.4	ddd						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10.6)					_	1.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.2	(4.0)					1.2)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· · ·	3.2 \$ 3.6	(4.0)			1.24		1.4 1.9	(3.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			·	0.97						1.47	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· . —	$\frac{3.1}{3.9}$	(3.9)			1.23		1.0	(2.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2.4)						1.5	(3.4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.00	7.8	111						(2.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.99	13.9 > 19.1	aaa		242	11/		0.7	(3.4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10.6)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.96	$\frac{3.7}{10.1}$	ddd		013	3.76		1.6	(1.8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				9.4					3.37		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · · ·	3.6 4.6	(4.0)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	800			2.8			213	2.64		3.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	810	0.91		4.0	(3.2)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				·		-			2.06		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	4.81	_	4.6	(2.5)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4.06								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										4.87	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											(2.7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											(2:5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 23							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.74		12.1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(3.9)				_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.63						_		(3.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									_		(3.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_			4					(3.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										0.17	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											(3.4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
\$11.3 ddd			1 20	1.7)	•	-					(3.4)
			1.22	>11.4	ddd				_		(3 4)
							UMJ	1 0)		Urgj	

Table 2—(continued)

h k l	d_{c}	d_0	$F_{f c}$	F_0		hk!	$d_{\mathbf{c}}$	d_0	$F_{\mathtt{c}}$	F_0
<i>11.</i> 1.						·				
114	2.98	2.99	3.9	ddd		126	1.82	1.80	12.5	10.5
204	2.80	2.78	13.1	9.9		316	1.75	1.74	22.4	18.1
214	2.44	2.44	6.7	5.7		226	1.68	1.66	9.5	13.3
024	2.16		1.2	(1.9)		406	1.55	1.54	22.6	17.5
124	2.07	2.05	4.8	7.0		326	1.49	1.49	${13.8 \atop 8.7}$ 16.3	14.3
314	1.97	1.96	8.8	5.7		416	1.48	.1 7/	8.7	
224	1.87		3.5	(2.3)		136	1.41		2.0	(2.8)
404	1.70	1.70	9.3	ddd		236	1.34	1.33	13.6	11.4
324	1.62		5.3 6.3	(2.7)		426	1.32	1.31	10-3	ddd
414	1.61	· 	3.4)	•		516	1.27	1.27	11.7	ddd
134	1.52		0.5	(2.8)		336	1.24		3.5	(3·1)
234	1.43		5.2	(2.9)		526	1.16		4.3	(3.2)
424	1.41		3.5	(3.0)		046	1.15	-	4.7	(3.2)
514	1.35		4.1	$(3\cdot1)$		146	1.14		7⋅3 ๅ	
334	1.32		1.3	(3.2)		436	1.14	1.14	7.7 > 11.4	ddd
524	1.22	_	1.7	(3.2)		606	1.13		4.2	
044	1.20		1.8	(3.2)		246	1.10	·	$\begin{cases} 2.5 \\ 1.6 \end{cases}$ 3.0	(3.2)
434	1.19		2.47	(2.4)		616	1.10		1.6	()
604	1.19		2.9 \ 4.1	(3.4)		346	1.04		9.07	
144	1.19		1.7			536	1.03	1.04	2.8 9.6	ddd
614	1.15		0.9 1.3	(3.4)		626	1.03		2·1	
244	1.14	-	0.9)	. ()						
624	1.07		3.2	(2.4)		017	2.20	2.10	20.6	30.5
534	1.07		1.0 3.4	(3.4)		017 117	2.20	2.19	38.6	12.7
344	1.07		ا 0.6				2·11 2·04	2·09 2·02	15·1 12·5	14.5
						207	1.89	1.88	17.6	17.8
015	2.83	2.81	5.6	6.2		217 127	1.70	1.70	30.7	25.4
115	2.64	2.64	9.9	8.2		317	1.70	1.70	0.3	(2.3)
205	2.51	2.51	13.4	10.8		227	1.58		7.7	$(2\cdot3)$
215	2.24		0.6	(1.9)		407	1.48	1.49	12.7	ddd
125	1.95		2.6	(2.2)		327	1.43	1 42	6.2)	
315	1.86	1.84	6.2	3.8		417	1.42		0.6 6.3	(2.6)
225	1.77	1.76	5.5	ddd		037	1.38	1.38	29.0	23.3
405	1.63		3.1	(2.7)		137	1.36	1 30	4.8	(2.8)
325	1.56		$\frac{2.5}{3.7}$	(2.7)		237	1.29	1.29	14.0	13.4
415	1.55		2.87			427	1.27	1 2/	4.6	(2.9)
035	1.50		3.1	(2.8)		517	1.23	1.22	16.2	15.2
135	1.47		1.9	(2.9)		337	1.20		2.5	(3.0)
235	1.39		0.6	(3.0)		527	1.13		1.4	(3.0)
425	1.37		1.1	(3.0)		147	1.10		17.27	()
515	1.31		0.8	(3.0)		437	1.10	1.10	0.6 26.3	19.1
335	1.28		1.4	(3.1)		607	1.10		19.9	
525	1.20		1.9	(3.2)		617	1.08		0.77	(2.0)
435	1.17		1.5	(2.2)		247	1.07		2.8 2.9	(3.0)
145	1.16		2.7 3.7	(3.2)		347	1.02		2.57	
605	1.16		2.0			537	1.01	1.01	2.5 10.3	ddd
245	1.12		$0.3 \ 0.8$	(3.2)		627	1.01		ر 9٠٦	
615	1.13		0.73							
345	1.06		1.8	(2.2)						
535	1.06		$ \begin{array}{c c} 0.3 & 2.4 \\ 1.5 \end{array} $	(3.2)		0.0.12	1.43	1.43	11.1	d
625	1.06	. —	T-27			0.0.14	1.22	1.22	24.5	m
						1.1.14	1.17	1.17	15.8	md
116	2.35	2.34	9.3	8.6		2.0.14	1.16	11/	100)	1110
206	2.26	2.25	28.8	25.5		2.1.14	1.13		0.8	 ·
	200	205	17.5	17-1		0.2.14	1.11	1.11	11.2	d
216 026	2·06 1·88	2.05	3.3	(2.3)		1.2.14	1.08	* * *	1.6	_

Table 1 shows the atomic coordinates corresponding to this model of the macro-molecule and in Table 2 the comparison between F_c and F_0 is reported.

The isotropic temperature factor used in the final F_c calculations is 4.6 Å^2 . The reliability factor R, calculated for 0, 1, 2, 3, 4, 5, 6, 7 layer lines, is 21 per cent. The F_0 figures given in brackets in Table 2, correspond to half the minimum observable intensity for all reflections which are not detected on the photographs. These figures tend to increase with the number of the layer lines because of the increasing diffuseness of the reflections.

The intensities of the reflections were measured, using the multiple-film method, by visual comparison with calibration spots of known relative exposure. The area of the reflections has been taken into account by visual estimation. The observed intensities have been corrected for Lorentz and polarization factors and multiplicity.

Discussion of the structure of trans polyheptenamer (Structure I of trans polyalkenamers)

Trans polyheptenamer, as well as trans polypentenamer, the first odd member of the homologous series of trans polyalkenamers studied by us, as far as structure properties are concerned, belongs to the class of compounds (low molecular weight substances and polymers) whose molecules possess rather long planar paraffinic sequences. The packing of the macromolecules of trans polyheptenamer is essentially conditioned by the paraffinic planar sequences; the trans double bonds, although imposing a non-planar conformation to the macromolecule, have a little influence on the packing itself. As we have seen, the unit cells of trans polyheptenamer and of trans polypentenamer have the same equatorial dimensions and the same symmetry as those of the stable modification of odd n-alkanes and of orthorhombic polyethylene. These analogies are the direct consequence of a strict similarity between the chain conformations and the packing of the molecules of these compounds.

As it will be later observed, these structural analogies in the crystal state, between *trans* polyalkenamers and *n*-alkanes, hold also in the case of the even members of the two homologous series.

It can be reasonably expected that the odd terms of the homologous series of crystalline *trans* polyalkenamers having more than five — CH_2 — groups between two consecutive double bonds, crystallize in unit cells, whose a and b cell edges and space groups should be the same as those found for *trans* polypentenamer and for *trans* polyheptenamer. The crystal structure found for these two polymers correspond, in fact, to the crystal structure of polyethylene, the last member of the homologous series.

Acknowledgements—We wish to thank Mr. Baffi who actively contributed to the execution of this work and the Centre for the Scientific Calculation of Montecatini-Edison S.p.A. where all calculations connected with the definition of the structure of this polymer were performed.

REFERENCES

- (1) G. Natta, G. Dall'Asta and G. Mazzanti, Angew. Chemie, 76, 765 (1964); Angew. Chemie, (Internat. Edn.) 3, 723 (1964).
- (2) G. Natta, G. Dall'Asta, I. W. Bassi and G. Carella, Makromolek. Chem. 91, 87 (1966).
- (3) G. Natta and P. Corradini, Ricerca Scient. (Suppl.), 25, 3 (1955);
 - R. H. Pierce, J. P. Tordella and W. M. D. Bryant, J. Am. chem. Soc. 74, 282 (1952);
 - E. R. Walter and F. P. Reding, J. Polym. Sci. 21, 557 (1956);
 - P. W. Teare and D. R. Holmes, J. Polym. Sci. 24, 496 (1957);
 - A. Turner Jones, J. Polym. Sci. 62, 53 (1963);
 - K. Tanaka, T. Seto and T. Hara, J. phys. Soc. Japan, 17, 873 (1962).

(4) A. Müller and K. Lonsdale, Acta Cryst. 1, 129 (1948); A. I. Kitaigorodakii, Organic Chemical Crystallography, pp. 178-215, Consultants Bureau, New York (1961).

(5) Internat. Tables X-Ray Crystallography, Vol. 1, The Kynoch Press, Birmingham (1952).

(6) G. Natta and I. W. Bassi, Accad. Naz. Lincei Rc. 38, 315 (1965).

(7) C. W. Bunn, Trans. Faraday Soc. 35, 482 (1939).

(8) G. Natta, P. Corradini and L. Porri, Atti Accad. Naz. Lincei Memorie 20, 128 (1955);

G. Natta, L. Porri and D. Morero, Chimica Ind. 40, 362 (1958);

G. Perego and I. W. Bassi, Makromolek. Chem. 61, 198 (1963);

G. Natta, I. W. Bassi and G. Perego, Accad. Naz. Lincei Rc. 36, 291 (1964).

(9) P. Corradini, Accad. Naz. Lincei Rc. 28, 1 (1960).

(10) P. Ganis and E. Martuscelli, Ricerca scient. 36, 439 (1966).

Résumé—La structure cristalline du *trans* polyhepténamère [—CH—CH—(CH₂)₅—]_n a été définie en se basant sur les spectres aux rayons X obtenus à partir de fibres étirées. La maille élémentaire rhombique a deux chaînes polymériques. La répétition le long de l'axe de la fibre a lieu après deux unités C_7H_{12} . La maille élémentaire a les suivantes dimensions: a=7.40 Å; b=5.00 Å; c=17.10 Å; (axe de la macromolécule) groupe spatial D_{2h}^{16} (P n a m).

Les axes a et b de la maille éléméntaire ainsi que l'assemblage des molécules du trans polyhepténamère sont semblables à ceux qu'on a trouvés pour le trans polypenténamère et pour le polyéthylène rhombique. Les atomes de carbon de la chaîne polymérique du trans polyhepténamère se trouvent sur deux plans distincts. On a remarqué, dans quelques spectres i.r., la présence d'une autre modifica-

tion cristalline du trans polyhepténamère.

Sommario—Mediante spettri ai raggi X, ottenuti da fibre stirate, è stata definita la struttura cristallina del trans polieptenamero [—CH—CH—(CH₂)₅—]_n. La cella elementare rombica contiene due catene polimeriche. La ripetizione lungo l'asse della fibra si ha dopo due unità C_7H_{12} . Le dimensioni della cella elementare sono: a=7.40 Å; b=5.00 Å; c=17.10 Å (asse della macromolecola) gruppo spaziale D_{26}^{16} (P n a m).

Gli assi a e b della cella elementare e l'impacchettamento delle molecole del trans polieptenamero sono simili a quelli trovati per il trans polieptenamero e per il polietilene rombico. Gli atomi di carbonio della catena polimerica del trans polieptenamero giacciono su due piani distinti. È stata osservata la presenza di un'altra modificazione cristallina del trans polieptenamero, in alcuni spettri i.r.

Zusammenfassung—Die Kristallstruktur des trans-Polyheptenamers [—CH—CH—(CH₂)₅]_n wurde mit Hilfe der Röntgenbeugungspektren kaltverstreckter Fasern bestimmt.

Die rhombische Elementarzelle enthält zwei Ketten mit je zwei chemischen Struktureinheiten pro Faser-periode. Die Zelldimensionen sind: a=7.40 Å; b=5.00 Å; c=17.10 Å (Faserachse) Raumgruppe D_{2h}^{16} (P n a m).

Die a- und b-Achsen und die Raumpackung der Ketten sind sehr ähnlich denen, die für das rhom-

bische Polyäthylen gefunden wurden.

Die Kohlenstoffatome der Polymerenkette liegen auf zwei verschiedenen Ebenen. Die ungeraden Glieder der homologen trans-Poyalkenameren in der hier beschriebenen Modifikation stellen eine Serie mit analogen Kristallstrukturen dar.