GIULIO NATTA/ITALO PASQUON

PRINCIPI

DELLA CHIMICA

INDUSTRIALE

VOLUME PRIMO

APPLICAZIONI DELLA
TERMODINAMICA
ALLE REAZIONI DELLA GRANDE
INDUSTRIA CHIMICA

TAMBURINI EDITORE
MILANO
PIANO GENERALE DELL'OPERA

VOLUME I
Applicazioni della Termodinamica
alle reazioni della grande industria chimica

VOLUME II
Applicazioni della cinetica e della catalisi
alle reazioni chimiche industriali

VOLUME III
Criteri per l'applicazione industriale
dei processi di separazione e di purificazione

VOLUME IV
Criteri per l'impostazione
e la condotta dei processi chimici
PRINCIPI DELLA CHIMICA INDUSTRIALE

GIULIO NATTA
Premio Nobel per la Chimica
Professore di Chimica Industriale al Politecnico di Milano

ITALO PASQUON
Professore di Chimica Industriale al Politecnico di Milano

VOLUME PRIMO

Applicazioni della Termodinamica alle reazioni della grande industria chimica

TAMBURINI EDITORE - MILANO
1966
Tutte le copie debbono portare la firma
di almeno uno degli Autori

[Signature]

No 0474
PREFAZIONE

Quando nel 1938 fui chiamato ad insegnare Chimica Industriale al Politecnico di Torino, e successivamente a quello di Milano, dopo aver insegnato, come professore di ruolo, Chimica Generale a Pavia e Chimica Fisica a Roma, mi ripromisi di impostare il corso in modo ben diverso da come era stato fatto fino ad allora nei Politecnici e nelle Università Italiane.

I programmi tradizionali, infatti, suddividevano gli argomenti a seconda delle analogie di proprietà e di impiego dei principali prodotti chimici di produzione industriale (come ad es. acidi, basi, fertilizzanti, idrati di carbonio, fibre tessili naturali e sintetiche, etc.). Per ciascun prodotto si descrivevano i metodi più diffusi seguiti, eventualmente, lo sviluppo storico. Generalmente i corsi avevano un carattere descrittivo, ed il loro aggiornamento incontrava serie difficoltà data la riservatezza mantenuta dai principali costruttori di impianti e dalle industrie che li esercivano, sui perfezionamenti apportati. Fin dall'inizio, mi ero ripromesso di svolgere un programma che fosse più formativo che informativo e che spiegasse i concetti fondamentali della Chimica Industriale e delle vie da seguire per ottenere le massime rese ed i minori prezzi di costo.

A tale scopo venivano richiamati alcuni concetti della termodinamica, già in parte sviluppati da un punto di vista teorico nei corsi di Chimica Fisica, e ne veniva mostrata l'importanza pratica nella previsione e nell'ottenimento delle massime rese, a seconda dei diversi fattori che possono influire sugli equilibri chimici. Veniva inoltre sviluppata, da un punto di vista generale, la Cinetica Chimica, in particolare dei processi catalitici. La classificazione di tali processi non era tanto basata sul tipo di applicazione dei prodotti ottenuti, quanto sul tipo di reazione (termicità, variazione di entalpia libera, temperatura di esercizio, comportamento cinetico) determinante l'impostazione del ciclo lavorativo ed il tipo di reattore da impiegarsi.

Questi concetti sono stati via via affinati ed estesi anche per merito dei miei collaboratori ed in particolare del prof. Pasquon, che tiene il primo dei due corsi di Chimica Industriale al Politecnico di Milano, e che mi ha anche spesso sostituito nello svolgimento del secondo corso.

Questo testo, oltre ai tre primi volumi di carattere generale, che sono dedicati alle applicazioni della termodinamica, della cinetica e della catalisi, e dei processi di frazionamento, comprende anche una parte dedicata allo studio dell'impostazione e della condotta dei processi chimici.
In quest'ultima parte, i processi chimici industriali più importanti e significativi, sono illustrati applicando i concetti discussi nella parte generale, in modo che il corso presenti, anche in questa fase, un carattere più formativo che informativo. In questa sede vengono illustrati non soltanto i singoli procedimenti, ma soprattutto discusse le ragioni per cui un procedimento viene in pratica preferito — sempre, oppure in condizioni particolari — ad un altro chimicamente possibile.

La particolare impostazione data a questo corso dovrebbe consentire ai giovani, che nella loro carriera professionale dovranno studiare nuovi procedimenti, di impostare e seguire lo sviluppo di una produzione industriale o di controllarne l'esercizio. Permetterà inoltre di prevedere, nella condotta di un processo chimico, come quest'ultimo venga influenzato o meno dalle variazioni prevedibili di fattori diversi.

Una preparazione di tipo formativo è tanto più importante oggi data la produzione di massa di certi prodotti: piccole variazioni nelle rese o nella purezza dei prodotti ottenuti possono infatti determinare la convenienza e l'economicità di un processo.

L'enorme e continua evoluzione dell'industria chimica in generale, e di quella petrolchimica in particolare, rende attuali nuove lavorazioni e nuovi prodotti e richiede un numero sempre maggiore di tecnici per l'impostazione razionale di nuovi processi industriali sulla base di dati chimici, termici, energetici e cinetici, la cui conoscenza è quindi di fondamentale importanza.

Ritengo che il trattato al quale abbiamo dato il titolo di «Principi della Chimica Industriale» — possa essere utile, oltre che per la formazione degli allievi, in particolare di quelli di ingegneria chimica, anche per i progettisti che svolgono la loro attività negli uffici tecnici e per i tecnici che lavorano nei laboratori di ricerca dell'industria, e nelle fabbriche per la messa in marcia e per l'esercizio di nuovi processi chimici.

G. Natta
INTRODUZIONE AL 1° VOLUME

Tra i diversi dati che devono essere noti per impostare, comprendere ed anche saper condurre nel modo più opportuno un processo chimico, quelli di carattere termodinamico hanno sovente una posizione preminente.

Particolarmente utile è ad esempio la conoscenza dei $\Delta G^°$ di formazione dei composti dagli elementi e dei $\Delta G^°$ di reazione, sovente indispensabile per risolvere importanti quesiti quali i seguenti:

- calcolo della costante di equilibrio di una data reazione, alle diverse temperature;
- calcolo della resa massima raggiungibile in un dato processo chimico (condotto in una sola operazione, senza allontanamento dei prodotti e senza ricicli);
- possibilità pratiche di attuazione di una reazione;
- stabilità termodinamica di un dato composto rispetto ad altri, o rispetto agli elementi che lo costituiscono;
- calcolo della tensione minima da applicare ad una cella elettrochimica affinché in essa si possa verificare una data reazione;
- ricerca delle condizioni operative (di temperatura, di pressione o di concentrazione) più vantaggiose per effettuare una data reazione, con alte rese;
- ricerca delle condizioni operative più vantaggiose affinché in un dato processo si formi la minor quantità di prodotti non desiderati, attraverso reazioni secondarie.

La conoscenza dei dati termochimici (ΔH di reazione, calori specifici, calori latenti) è a sua volta molto utile per precisare certe modalità operative connesse alla regolazione termica di una data operazione ed il tipo di reattore da impiegare. Ad esempio, il fatto che una reazione sia molto esoterica può suggerire l'impiego di un reattore o di un tipo di processo radicalmente diversi da quelli consigliabili per una reazione endotermica o meno esoterica.

Lo scopo fondamentale di questo volume è appunto quello di illustrare allo studioso i modi di valutazione delle grandezze termodinamiche delle sostanze chimiche e di mostrare, con alcuni esempi, la loro applicazione allo studio delle reazioni dell'industria chimica.
Si è dato un certo rilievo ad alcuni metodi di calcolo — tra quelli proposti in letteratura — aventi un ampio campo di applicabilità (metodi generalizzati per lo studio dei gas reali, contributo di gruppi per il calcolo dei ΔG° e ΔH° dei composti organici, ecc.), corredandoli di tabelle e diagrammi attinti dalla letteratura più recente, con l'intento di mettere in grado lo studioso di valutare con rapidità e con buona approssimazione le grandezze che desidera conoscere.

Non si è tuttavia trascurato di citare i testi ed i manuali più aggiornati, per lo studio di altri metodi di calcolo e per la ricerca dei valori più accurati delle grandezze in esame.

Per comodità di esposizione ed anche per comodità degli studiosi, nel primo capitolo di questo volume vengono richiamati alcuni concetti e definizioni che sono oggetto dei corsi di Chimica Fisica; non è superfluo ricordare che la corretta applicazione del valore numerico di una data grandezza termodinamica non è compatibile con l'ignoranza del significato corretto di detta grandezza.

A qualche vecchio chimico ed a qualche giovane che non è ancora venuto a contatto coi problemi veri della moderna industria chimica, potrà forse sembrare eccessivo lo sviluppo dato ai richiami di termodinamica. Si fa presente però che ad essi è stata data un'impostazione un po' diversa da quella abituale di molti corsi universitari, per dare una chiara sensazione della portata e della utilizzabilità della termodinamica chimica.

Gli Autori
INDICE

Prefazione all'opera VII
Introduzione al 1° volume IX
Simboli XIII

CAPITOLO I
RICHIAMI DI TERMODINAMICA
1. Sistemi in evoluzione e sistemi all'equilibrio 1
2. Calore non compensato 2
3. Creazione di entropia e velocità di reazione 3
4. Entalpia libera e velocità di reazione 4
5. Variazione di entalpia libera e potenziale chimico 7
6. Fugacità, attività 10
7. Stati di riferimento 12
8. Soluzioni ideali e soluzioni reali 18
9. Relazione tra ΔG e ΔG^0 - Costanti di equilibrio 21
10. Entalpia libera, entalpia ed entropia standard di formazione dei composti 24
11. Osservazioni sul significato di ΔG^0, ΔH^0 e ΔS^0 26
12. Reazioni termodinamicamente favorite e reazioni termodinamicamente non fortunate 29
13. Stabilità termodinamica dei composti rispetto agli elementi 29
14. Osservazioni sull'entalpia libera standard di formazione a T e P costanti degli ioni e degli elettroliti in soluzione acquosa 29
15. Tensioni standard di ossidazione - Serie elettrochimica 33
16. Influenza della temperatura su alcune grandezze termodinamiche 36

CAPITOLO II
PREVISIONE DI GRANDEZZE FISICHE E TERMODINAMICHE DI GAS IDEALI, DI LIQUIDI PURI, DI SOLIDI E DI ELETTROLITI
1. Premessa 39
2. Calcolo delle entalpie libere standard di formazione (ΔG^0) di sostanze organiche, allo stato gassoso, con il metodo dei contributi di gruppo 40
3. Calcolo delle entalpie di formazione (ΔG^0) per composti organici allo stato condensato 51
4. Calcolo delle entalpie libere di formazione (ΔG^0) per composti organici in soluzione 53
5. Valutazione dei ΔH^0 di formazione di composti organici 54
6. ΔG^0 e ΔH^0 di formazione di ioni in soluzione acquosa e di composti inorganici 61
7. Calore molare dei gas ideali allo stato puro 66
8. Calore molare dei liquidi 74
9. Calori atomici e calori molar del solidi 79
10. Calore latente di vaporizzazione dei liquidi 80
11. Valutazione e correlazione delle tensioni di vapore dei liquidi puri 82
CAPITOLO III
APPLICAZIONE DELLE ENTALPIE LIBERE DI FORMAZIONE (ΔG°) E DELLE ENERGIE DI DISSOCIAZIONE DEI LEGAMI ALLO STUDIO DI REAZIONI CHIMICHE

1. Calcolo della resa all’equilibrio termodinamico con l’ausilio dei ΔG° 87
2. Influenza degli errori sul ΔG°, nella valutazione delle K di equilibrio e delle rese 90
3. Valutazione di temperature e di pressioni di reazioni dai ΔG° di reazione 91
4. Diagramma di Francis - Stabilità relativa di idrocarburi e di altri composti organici 102
5. Stabilità relativa di radicali e ioni - Energie di legame e loro applicazione allo studio di reazioni chimiche 109
6. Caratteristiche termodinamiche di reazioni organiche interessate da solidi scambi di "gruppi" 115
7. ΔH° e ΔS° di reazioni appartenenti ad una stessa classe 116
8. Processi elettrochimici - Calcolo delle tensioni standard da applicare alle celle 118

CAPITOLO IV
PROPRIETÀ DI GAS REALI E DI LIQUIDI PURI; EQUILIBRI CHIMICI E CALORI DI REAZIONE IN SISTEMI GASSOSI REALI

1. Introduzione 121
2. Equazioni di stato di gas reali allo stato puro 121
3. Stati corrispondenti. Coefficienti di comprimibilità generalizzati 122
4. Densità dei liquidi puri 127
5. Coefficienti di fugacità generalizzati per gas puri 128
6. Influenza della pressione su: entalpia, energia interna, entropia e calore molarne dei fluidi non ideali allo stato puro 129
7. Valutazione delle proprietà termodinamiche per sistemi gassosi non ideali a più componenti 134
8. Miscela gassose ideali e non ideali - Legge di Amagat 135
9. Applicazione della legge di Dalton 138
10. Metodo delle condizioni pseudocritiche 140
11. Osservazioni sull’applicabilità dei predetti metodi al calcolo di proprietà di miscele di gas 143
14. Equilibri chimici in sistemi gassosi reali 150
15. Calori di reazione in sistemi gassosi reali 154

CAPITOLO V
EQUILIBRI CHIMICI E CALORI DI REAZIONE IN SISTEMI CONDENSATI

1. Premessa 159
2. Calori integrali di soluzione e cenni su altre proprietà di soluzioni 160
3. Calori di reazione in sistemi liquidi 163
4. Equilibri chimici in sistemi condensati. Esempi 164
5. Impiego dei diagrammi di stato nel calcolo delle rese. Sistemi ternari 169
6. Impiego di diagrammi di stato nel calcolo delle rese - Sistemi quaternari 173

BIBLIOGRAFIA 179
INDICE DEGLI ARGOMENTI 183
INDICE DEGLI AUTORI 189
SIMBOLI

A affinità
a attività
a^a attività relativa allo stato di riferimento della fig. (3,1)
a^u attività relativa allo stato di riferimento della fig. (1,1)
a^a attività relativa agli stati di riferimento della fig. (2,1) o (4,1)

C velocità della luce
c_P calore molare a P costante
c_P^0 calore molare a P costante di un gas supposto ideale
c_V calore molare a V costante
c_V^0 calore molare a V costante di un gas supposto ideale
c_i contributo al calore molare di una molecola dovuto alla vibrazione trasversale del legame i
c_{ti} contributo al calore molare di una molecola dovuto alla vibrazione assiale del legame i
c_P calore parziale molare a P costante
c_P^0 calore specifico a P costante

E differenza di potenziale
E_r energia di risonanza
e elettroone

F energia libera
F 96493,5 coulomb/g eq.

G entalpia libera
G^0 entalpia libera in uno stato di riferimento

H entalpia
H^0 entalpia in uno stato di riferimento
h entalpia molare
h_m entalpia molare di una miscela

h costante di Plank
h^0 entalpia molare standard (in uno stato di riferimento)

K costante di equilibrio
K_a costante di equilibrio in termini di attività
K_{P^*} costante di equilibrio in termini di fugacità

$K_P = \Pi P_i^0$
$K_P^p = \Pi q_i^{p*} = K_{P^*} / K_P$

k_i costante di Henry per il gas i
k costante di Boltzmann

L_u lavoro utile compiuto da un sistema

m molalità

n numero di atomi contenuti in una molecola
n_i numero di moli del componente i
n_i^f gradi di libertà per rotazioni interne in molecole
n numero di cariche interessate ad un processo elettrochimico

P pressione
P_c pressione critica
P_r pressione ridotta
P_s tensione di vapore
P_{p^*} pressione pseudocritica
P^* pressione in uno stato di riferimento
P^{*o} fugacità
P^{*o} fugacità in uno stato di riferimento

Q calore
Q' calore non compensato
q_i numero di legami di tipo i contenuti in una molecola
R costante dei gas

S entropia

S^0 entropia in uno stato di riferimento

s entropia molare

s^0 entropia molare standard (in uno stato di riferimento)

T temperatura

T_{eb} temperatura di ebollizione a $P = 1$ atm.

T_c temperatura critica

T_r temperatura ridotta

T^o temperatura pseudocritica

U energia interna

U^0 energia interna in uno stato di riferimento

u energia interna molare

u^0 energia interna standard (in uno stato di riferimento)

V volume

v volume molare

v_c volume molare critico

\bar{v} volume molarie molare

v velocità di reazione, o di trasformazione

W_u lavoro utile ricevuto da un sistema

x frazione molare

z coefficiente di comprimibilità

z_c coefficiente di comprimibilità critico

z_m coefficiente di comprimibilità di una miscela

z^r coefficiente di comprimibilità pseudocritico

Γ parametro dell’equazione di Wada (37,II)

γ coefficiente di attività

$m\gamma$ coefficiente di attività relativo allo stato di riferimento della fig (3,1)

$z\gamma$ coefficiente di attività relativo allo stato di riferimento della fig (2,1) o (4,1)

Δ simbolo di differenza

∂ operatore $\partial/\partial \xi$

$\Delta G = \left(\frac{\partial G}{\partial \xi} \right) T,P$ variazione di entalpia libera

ΔG^o variazione di entalpia libera standard

ΔG_i^o entalpia libera standard di formazione del composto i dagli elementi

ΔH variazione di entalpia

ΔH^o variazione di entalpia standard

ΔH_i^o entalpia standard di formazione del composto i dagli elementi

ΔH_{ev} entalpia molare di vaporizzazione

ΔS variazione di entropia

ΔS^o variazione di entropia standard

ΔS_i^o entalpia standard di formazione del composto i dagli elementi

ν_A^D resa di D rispetto ad A

A parametro dell’equazione di Wada (37,II)

λ calore di vaporizzazione

μ potenziale chimico

μ^o potenziale chimico in uno stato di riferimento

ν coefficiente stochiometrico

ξ grado di avanzamento

ϱ densità

ϱ_c densità critica

ϱ_r densità ridotta

σ fattore di simmetria molecolare

φ coefficiente di fugacità

φ_s coefficiente di fugacità di vapore satto

ω frequenza di una vibrazione

ω_B frequenza di vibrazione trasversale di un dato legame

ω_T frequenza di vibrazione assiale di un dato legame

Note

a la lettera α in alto a destra indica fase, esempio: $\mu_i^\alpha = \gamma$ potenziale chimico di i nella fase α.

c la lettera c in alto a destra indica: fase cristallina esempio: $\Delta G_{i}^{\infty} = \gamma$ entalpia libera standard di formazione dagli elementi di i cristallino.
la lettera g in alto a destra indica: fase gassosa

la lettera l in alto a destra indica: fase liquida

80^g in alto a destra indica: fase gassosa pura di i; esempio: $h_f^i = \text{entalpia molare di } i \text{ puro allo stato gassoso}$

la lettera p in alto a destra indica: prodotto puro; esempio: $P_i^{**} = \text{fugacità di } i \text{ allo stato puro}$

la lettera v in alto a destra indica: fase vapore

$l^{*_{eq(ip)}}$ l'insieme di questi indici si riferisce allo stato ipotetico di riferimento a molalità unitaria in fase acquosa (fig (3,1)); esempio:

$$\Delta G_{i,m}^{*,eq(ip)} =$$

= entalpia libera standard di formazione di i dagli elementi in fase acquosa nello stato ipotetico di riferimento a molalità unitaria

una lineetta sopra una lettera minuscola indica una grandezza parziale molare; esempio $\tilde{c}_p = \text{calore parziale molare}$

il segno $^{\circ}$ in alto a destra indica uno stato di riferimento (stato standard).
CAPITOLO I

RICHIA MI DI TERMODINAMICA

1. Sistemi in evoluzione e sistemi all’equilibrio. — Si consideri un sistema suscettibile di essere sede di trasformazioni chimiche o fisiche (caratterizzate, queste ultime, dal trasporto di materia da una fase all’altra del sistema), chiuso agli scambi di materia con l’esterno e mantenuto in un ambiente avente temperatura uniforme e costante; questo sistema tenderà ad evolversi in un tempo più o meno lungo verso uno stato di equilibrio che definiremo: stato di equilibrio termodinamico. In molti casi, sistemi non in stato di equilibrio termodinamico, risultano apparentemente stabili (sistemi in stato di equilibrio apparente), ma talvolta, l’impiego di opportuni catalizzatori può consentirne l’evoluzione in tempi finiti, verso uno stato di equilibrio termodinamico relativo (rispetto cioè ad una data reazione) o anche verso quello assoluto (rispetto cioè a tutte le reazioni possibili); come è ben noto, la posizione degli equilibri termodinamici (relativi e assoluti) è indipendente dal tipo di catalizzatore eventualmente utilizzato, dal tempo impiegato dal sistema per raggiungerla e dal tipo di reattore utilizzato per attuare la o le reazioni.

Questi aspetti catalitici e cinetici delle reazioni chimiche saranno oggetto di un volume successivo. In questa prima parte considereremo soltanto gli aspetti termodinamici delle trasformazioni chimiche e fisiche.

Sono noti numerosi criteri per valutare se un sistema contenente un grande numero di molecole di una o più specie chimiche è all’equilibrio termodinamico o meno. Tra tutti, ricorderemo quello sviluppato da De Donder, Prigogine e Defay [16, 76], che riteniamo di carattere più generale, e che si basa sulla nozione di creazione di entropia.

L’entropia di un sistema, comunque chiuso o aperto a scambi di materia e di energia con l’ambiente, può variare per due cause; per scambio di entropia con l’ambiente e per creazione di entropia all’interno del sistema dovuta ai fe-
nomini irreversibili che hanno luogo nel sistema stesso, ossia:

\[(1, \ I) \quad dS = dS_e + dS_i; \]

ove:
- \(dS \) è variazione di entropia subita dal sistema in un intervallo di tempo \(dt \);
- \(dS_i \) è entropia creata all’interno del sistema nell’intervallo di tempo \(dt \), a causa dei processi irreversibili che avvengono nel sistema;
- \(dS_e \) è entropia scambiata con l’ambiente nell’intervallo di tempo \(dt \).

Il secondo principio della termodinamica postula che \(dS_i \) soddisfa sempre la seguente condizione:

\[(2, \ I) \quad dS_i \geq 0. \]

La disuguaglianza è verificata per tutti i sistemi in evoluzione; per i sistemi all’equilibrio (termodinamico, oppure apparente) risulta invece:

\[(3, \ I) \quad dS_i = 0. \]

Si deve notare che un sistema è all’equilibrio anche quando un qualsiasi processo infinitesimo che ha sede in esso può avvenire in modo reversibile: in questo caso si ha sempre \(dS_i = 0 \).

2. Calore non compensato. — Alla variazione di entropia \(dS_o \) è stato associato da Clausius il cosiddetto « calore non compensato » \(\delta Q' \) (differenziale non esatto); per un sistema in stato di equilibrio termico (ossia a temperatura uniforme) il calore non compensato è definito nel modo seguente:

\[(4, \ I) \quad \delta Q' = T \, dS_o, \]

ove:
- \(T = \) temperatura del sistema in °K.

Per sistemi in stato di equilibrio termico e chiusi agli scambi di materia risulta:

\[(5, \ I) \quad dS_e = \delta Q/T, \]

ove:
- \(\delta Q \) è calore ceduto dall’ambiente al sistema.

Combinando le (1, I), (4, I) e (5, I) si ottiene, per qualunque sistema allo stato di equilibrio termico, chiuso solamente agli scambi di materia con l’ambiente:

\[(6, \ I) \quad \delta Q' = T \, dS - \delta Q. \]

Tenute presenti le (2, I), (3, I) e (4, I) diremo che per i sistemi in evoluzione,
cioè sede di processi irreversibili, risulta:

\[(7, \ I) \quad \delta Q' > 0,\]

mentre per i sistemi all'equilibrio (termodinamico o apparente):

\[(8, \ I) \quad \delta Q' = 0.\]

3. **Creazione di entropia e velocità di reazione.** — Supponiamo che la creazione di entropia \((dS)\) all'interno del sistema considerato, sia dovuta esclusivamente al verificarsi di reazioni chimiche od a fenomeni di trasporto di materia da una fase all'altra del sistema. Si esclude pertanto che vi sia creazione di entropia per trasporto di calore tra due regioni del sistema a temperatura diversa (condizione verificata se il sistema è all'equilibrio termico) oppure per moti viscosi all'interno del sistema (condizione verificata se il sistema è all'equilibrio meccanico).

Per ciascuno di questi processi chimici o fisici, si può definire un grado di avanzamento (o coordinata di reazione) ed una velocità di trasformazione:

\[(9, \ I) \quad v = \frac{d\xi}{dt},\]

ove:

\(v\) = velocità della trasformazione;

\(\xi\) = grado di avanzamento della trasformazione considerata;

\(t\) = tempo.

Si consideri ora per semplicità un sistema sede di una sola reazione (o trasformazione fisica).

Tenuti presenti il secondo principio della termodinamica \((\delta Q' \geq 0)\) e la relazione \((9, \ I)\), si osserva che per detto sistema sussistono le seguenti relazioni (essendo \(\frac{d\xi}{dt} > 0\)):

\[(10, \ I) \quad \frac{\delta Q'}{dt} = \delta Q' \cdot \frac{d\xi}{dt} \cdot \frac{\delta Q'}{d\xi} \cdot v \geq 0,\]

ossia:

\[
\begin{align*}
&\text{per} & &\text{risulta} \\
&\frac{\delta Q'}{d\xi} > 0 & & v \geq 0; \\
&\frac{\delta Q'}{d\xi} < 0 & & v \leq 0; \\
&\frac{\delta Q'}{d\xi} = 0 & & v = 0.
\end{align*}
\]

\[(11, \ I)\]
L'ultima delle (11, I) è una conseguenza della (8, I): in effetti, per i sistemi per i quali \(\delta Q'/d\xi = 0 \), risulta \(\delta Q = 0 \) per qualunque valore di \(d\xi \); detti sistemi sono all'equilibrio termodinamico rispetto alla trasformazione considerata. (Si ricorda che l'equilibrio termodinamico è un equilibrio dinamico per il quale la velocità di una data trasformazione in un senso è uguale alla velocità della stessa trasformazione in senso opposto).

Per \(\delta Q'/d\xi \neq 0 \) può anche aversi \(v = 0 \) (equilibrio apparente) ma nel caso che \(v \) sia diverso da zero il suo segno è sempre quello di \(\delta Q'/d\xi \) (vedi la relazione (10, I)).

4. **Entalpia libera e velocità di reazione.** — La relazione (6, I) può essere ulteriormente trasformata, tenute presenti le seguenti relazioni:

\[
\begin{align*}
(12, I) & \quad H = U + PV; \\
(13, I) & \quad G = H - TS; \\
(14, I) & \quad dU = \delta Q + \delta W_u - P dV
\end{align*}
\]

(1° principio della termodinamica applicato ai tipi di sistemi considerati nel paragrafo precedente), ove:

- \(H \) = entalpia del sistema,
- \(U \) = energia interna del sistema,
- \(G \) = entalpia libera del sistema o potenziale termodinamico a \(T \) e \(P \) costanti, o energia libera di Gibbs (1),
- \(P \) = pressione che il sistema esercita sull'involucro che lo contiene,
- \(V \) = volume del sistema,
- \(W_u \) = lavoro utile (lavoro diverso da quello conneso a variazioni di volume — ad esempio lavoro elettrochimico, energia fotochimica) ricevuto dal sistema nell'intervallo di tempo \(dt \).

Per i sistemi considerati si ottiene, con ovvi passaggi e sostituzioni:

\[
(15, I) \quad dG = -S dT + V dP + \left(\frac{\delta W_u}{d\xi} - \frac{\delta Q'}{d\xi} \right) d\xi.
\]

Ma per un dato sistema avente composizione iniziale assegnata, \(G = G(T, \)

(1) Diversi autori indicano la funzione di Gibbs con la lettera \(F \), denominandola anche semplicemente « energia libera ».
\(P, n_{i,o} + v_i \xi \) \(^{(2)}\) (ove \(n_{i,o} \) = numero di moli iniziali del componente \(i \)); differenziando si ottiene:

\[
(16, \ I) \quad dG = \left(\frac{\partial G}{\partial T} \right)_{P, \xi} dT + \left(\frac{\partial G}{\partial P} \right)_{T, \xi} dP + \left(\frac{\partial G}{\partial \xi} \right)_{T, P} d\xi.
\]

Paragonando i coefficienti delle (15, I) e (16, I) si ottiene in particolare:

\[
(17, \ I) \quad \frac{\delta W_u}{d\xi} - \frac{\delta Q'}{d\xi} = \left(\frac{\partial G}{\partial \xi} \right)_{T, P}
\]

Generalmente si pone:

\[
(18, \ I) \quad \left(\frac{\partial G}{\partial \xi} \right)_{T, P} = \Delta G.
\]

Il simbolo \(\Delta \)\(^{(3)}\) rappresenta quindi l'operatore \((\partial / \partial \xi)\) e non necessariamente una variazione di una data grandezza tra due stati distinti; malgrado ciò, \(\Delta G \) prende semplicemente il nome di «variazione» di entalpia libera a \(T \) e \(P \) costanti. \(\Delta G \) rappresenta la derivata a \(T \) e \(P \) costanti della entalpia libera, rispetto al grado di avanzamento.

Posto:

\[
(19, \ I) \quad \frac{\delta W_u}{d\xi} = -L_u,
\]

ove \(L_u \) rappresenta il lavoro utile compiuto dal sistema, relativo ad un grado di avanzamento unitario, risulta:

\[
(20, \ I) \quad \frac{\delta Q'}{d\xi} = -\Delta G - L_u.
\]

Tenute presenti le relazioni (11, I) e (20, I) si conclude che sussistono le seguenti relazioni:

\[
\begin{align*}
\text{per} & \quad \text{risulta} \\
-\Delta G - L_u > 0 & \quad \nu \geq 0; \\
-\Delta G - L_u < 0 & \quad \nu \leq 0; \\
-\Delta G - L_u = 0 & \quad \nu = 0.
\end{align*}
\]

In altri termini, una trasformazione chimica o fisica può avvenire, nel senso desiderato (\(\nu > 0 \)), solo se è verificata la disuguaglianza: \(-\Delta G - L_u > 0 \).

\(^{(1)}\) Con le espressioni del tipo \(g = g(x, y, z, \ldots) \) intendiamo indicare che la funzione \(g \) è funzione di \(x, y, z, \ldots \).

\(^{(2)}\) I simboli utilizzati in questo testo sono per la maggior parte quelli utilizzati dal Prof. Prostelli nel corso di Chimica Fisica da lui tenuto al Politecnico di Milano. Il simbolo \(d \) è stato da lui stesso proposto.
Nel caso che il sistema non scambi lavoro utile con l’ambiente le (21, I) diventano:

\[\begin{align*}
\Delta G &< 0 \quad \Rightarrow \quad v \geq 0; \\
\Delta G &> 0 \quad \Rightarrow \quad v \leq 0; \\
\Delta G &= 0 \quad \Rightarrow \quad v = 0.
\end{align*} \]

Le condizioni \(\Delta G + L_u = 0 \) e \(\Delta G = 0 \), per i sistemi che rispettivamente scambiano o meno lavoro utile con l’ambiente, sono verificate quando il sistema è all’equilibrio termodinamico rispetto alla trasformazione considerata. La relazione \(\Delta G + L_u = 0 \) è verificata anche per i sistemi (ipotetici) sedi di trasformazioni reversibili; quest’ultima osservazione permette di comprendere l’enunciato del seguente noto teorema: in una trasformazione condotta in modo reversibile a temperatura e pressione costanti, il lavoro utile compiuto da un sistema uguaglia la diminuzione della funzione di Gibbs.

Dalle (22, I) si può concludere in particolare che in un dato sistema in stato di equilibrio termico e meccanico, chiuso agli scambi di materia e di lavoro (d’essenza connesso e variazione di volume) con l’ambiente, una reazione chimica può avvenire spontaneamente — ed eventualmente mediante l’intervento di catalizzatori o di iniziatori — solo se il \(\Delta G \) corrispondente è negativo.

È opportuno osservare che queste conclusioni e le precedenti sono valide per qualunque trasformazione che avvenga, ad es. a \(T, P \) e \(V \) variabili, anche se il \(\Delta G \) è una variazione di entalpia libera connessa ad una trasformazione condotta a \(T \) e \(P \) costanti. In effetti \(\delta Q'/d \xi \) è stato introdotto e definito indipendentemente dal tipo di trasformazione e le relazioni (17, I) e (20, I) sono sempre verificate. Anziché a \(\Delta G, \delta Q'/d \xi \) poteva essere messo in relazione ad altre funzioni termodinamiche; ad es., si dimostra [76] che nel caso di sistemi per i quali il lavoro scambiato con l’ambiente è solo di tipo meccanico connesso a variazione di volume, risulta:

\[\frac{\delta Q'}{d \xi} = \left(\frac{\partial G}{\partial \xi} \right)_{T,P} - \left(\frac{\partial F}{\partial \xi} \right)_{T,V} = \left(\frac{\partial U}{\partial \xi} \right)_{S,V} - \left(\frac{\partial H}{\partial \xi} \right)_{S,P} \]

Al rapporto \(\delta Q'/d \xi \) è stato dato da De Donder [16] il nome di affinità che si indica con \(\Lambda \).

Le relazioni riportate in questo paragrafo sono state dedotte supponendo che il sistema considerato sia sede di una sola reazione chimica, o di un solo processo fisico di trasporto di materia da una fase all’altra e si devono quindi considerare relative a detta reazione o processo. Nel caso che il sistema sia sede di più trasformazioni \(\{ j \} \) tra loro indipendenti si avrà:

\[-\left(\frac{\delta Q'}{d \xi} \right) = \sum_j \left(\frac{\partial G_j}{\partial \xi_j} \right)_{T,P} = \sum_j \Delta G_j;\]
ma anche in questo caso, in condizioni di equilibrio termodinamico del sistema rispetto a tutte le trasformazioni considerate, si avrà per ciascuna trasformazione:

\[\Delta G_i = 0. \]

5. Variazione di entalpia libera e potenziale chimico. — Lo stato di un sistema come quelli considerati nel paragrafo precedente, risulta definito da due variabili chimico fisiche e dalla sua composizione. Nel caso dei sistemi omogenei, l'entalpia libera si può quindi esprimere:

\[G = G(T, P, n_A, n_B, \ldots); \]

ove:

\[n_i = \text{numero di moli della specie } i \text{ contenute nel sistema.} \]

Differenziando la (24, I) si ottiene:

\[dG = \left(\frac{\partial G}{\partial T} \right)_{P,n_i} dT + \left(\frac{\partial G}{\partial P} \right)_{T,n_i} dP + \sum_i \left(\frac{\partial G}{\partial n_i} \right)_{T,P,n_j \neq i} dn_i. \]

Per una trasformazione effettuata a temperatura e pressione costanti, la (25, I) diventa:

\[d_{T,P} G = \sum_i \left(\frac{\partial G}{\partial n_i} \right)_{T,P,n_j \neq i} dn_i. \]

E, posto [55](4):

\[\left(\frac{\partial G}{\partial n_i} \right)_{T,P,n_j \neq i} = \mu_i, \]

ove:

\[\mu_i = \text{potenziale chimico del componente } i \text{ nel sistema considerato a } T \text{ e } P, \]

la (26, I) diventa:

\[d_{T,P} G = \sum_i \mu_i dn_i. \]

Tenuto presente che se la variazione di composizione del sistema è dovuta ad una data reazione (per la quale alla variazione del grado di avanzamento \(d\xi \) corrisponde una variazione \(dG \)), si ha:

\[d\xi = v_i d\xi, \]

(ove: \(v_i = \text{coefficiente stecchiometrico preso con il segno positivo per le specie che si formano e con il segno negativo per quelle che scompaiono} \) si ottiene, portando nella (28, I):

(4) Si tenga presente che \(\left(\frac{\partial G}{\partial n_i} \right)_{T,P} \), ove \(x_i \) = frazione molare del composto \(i \), non è uguale a \(\mu_i \) perché gli \(x_i \) non sono tra loro indipendenti.
(30, I) \[d_{T,P} G = \sum_i v_i \mu_i \, d \xi, \]
eq \[\left(\frac{\partial G}{\partial \xi} \right)_{T,P} = \sum_i \left(\frac{\partial G}{\partial n_i} \right)_{T,P,n_{i \neq i}} \, d n_i \, d \xi = \Delta G = \sum_i v_i \mu_i \]

Tenute presenti le relazioni (22, I), il sistema potrà evolvere nel senso considerato se:
\[(32, I) \quad \Delta G = \sum_i v_i \mu_i < 0. \]
Se:
\[(33, I) \quad \Delta G = \sum_i v_i \mu_i = 0, \]
il sistema risulta all'equilibrio termodinamico rispetto alla trasformazione considerata.

Queste ultime due equazioni sono state dedotte per sistemi omogenei; nel caso di sistemi eterogenei, globalmente chiusi agli scambi di materia, l'entalpia libera è:
\[(34, I) \quad G = \sum_a G^a, \]
ove:
\[G^a = \text{entalpia libera della fase } \alpha. \]

Differenziando la (34, I) si ottiene:
\[(35, I) \quad d_{T,P} G = \sum_a \sum_i d_{T,P} G^a = \sum_a \sum_i \left(\frac{\partial G^a}{\partial n_i^a} \right)_{T,P,n_{i \neq i}} \, d n_i^a. \]
ove:
\[n_i^a = \text{numero di moli di } \alpha \text{ nella fase } \alpha. \]
Posto:
\[(36, I) \quad \mu_i^a = \left(\frac{\partial G^a}{\partial n_i^a} \right)_{T,P,n_{i \neq i}} \]
ove:
\[\mu_i^a = \text{potenziale chimico di } \alpha \text{ nella fase } \alpha, \text{ la (35, I) diventa:} \]
\[(37, I) \quad d_{T,P} G = \sum_a \sum_i \mu_i^a \, d n_i^a. \]

Da questa relazione, effettuando sostituzioni ovvie e procedendo in modo analogo a quanto è stato fatto per ottenere la (31, I), si ottiene:
\[(38, I) \quad \Delta G = \sum_a \sum_i v_i^a \mu_i^a. \]

\(^(*)\) Si può osservare che il criterio con il quale sono state dedotte la (32, I) e la (33, I) è equivalente al principio dei lavori virtuali applicato in Meccanica.
Poiché le equazioni (21, I) e (22, I) sono verificate anche per i sistemi eterogenei, si possono trarre le seguenti conclusioni:

In un sistema eterogeneo, una data reazione chimica (od una trasformazione fisica) può avvenire nel senso considerato se:

(39, I) \[\Delta G = \sum_a \sum_i v_i^a \mu_i^a < 0; \]

all’equilibrio termodinamico rispetto alla reazione o alla trasformazione considerata si avrà:

(40, I) \[\Delta G = \sum_a \sum_i v_i^a \mu_i^a = 0. \]

Quest’ultima equazione è particolarmente utile per lo studio degli equilibri fisici. A partire da essa si dimostra [55] che per ciascun componente «i» contenuto in diverse fasi \(\alpha, \beta, \ldots\), di un sistema eterogeneo, si ha, in condizioni di equilibrio termodinamico:

(41, I) \[\mu_i^{\alpha} = \mu_i^{\beta} = \ldots = \mu_i. \]

Per lo studio degli equilibri chimici in sistemi eterogenei, la (40, I) può essere modificata in un’equazione di più facile applicabilità. In effetti, sostituendo la (41, I) nella (37, I) e tenuta presente la relazione:

(42, I) \[\sum_a \sum_i v_i^a \, d \xi = v_i \, d \xi, \]

si ottiene, per un sistema eterogeneo in condizioni di equilibrio termodinamico:

(43, I) \[d_{T,P} G = \sum_i \mu_i \left(\sum_a d n_i^a \right) = \sum_i v_i \mu_i \, d \xi = 0; \]

ossia:

(44, I) \[\left(\frac{\partial G}{\partial \xi} \right)_{T,P} = \Delta G = \sum_i v_i \mu_i = 0. \]

Quest’ultima relazione è del tutto simile alla (33, I) relativa ai sistemi omogenei; il potenziale \(\mu_i\) da introdurre nella (44, I) può essere scelto, in modo arbitrario, in qualunque fase del sistema nella quale «i» è presente. Se nel sistema considerato è presente una fase fluida omogenea contenente tutti i reagenti che prendono parte alla reazione considerata, il potenziale chimico di ciascun reagente può essere scelto per detta fase; si può pertanto concludere che la (32, I) e la (33, I) sono verificate per reazione che avvengono sia in sistemi omogenei sia in una fase omogenea di un sistema eterogeneo.
6. Fugacità, attività. — I potenziali chimici, introdotti nel paragrafo precedente, sono delle grandezze parziali molari (vedi eq. 27, I), il cui valore numerico dipende dallo stato (temperatura, pressione, composizione) del sistema considerato. Si consideri ad es. un sistema soluto-solvente e sia \(\mu_{i,m} - \mu_i \) la differenza tra il potenziale chimico del soluto \(i \) nella soluzione avente molalità \(m \) e quello di una soluzione avente una molalità assegnata, diversa da zero. Al diminuire della molalità, come lo si vedrà meglio più avanti, la differenza \(\mu_{i,m} - \mu_i \) diminuisce e tende verso \(-\infty \) per \(m \to 0 \).

Si può osservare da quest’ultimo esempio che il potenziale chimico è una grandezza poco comoda da utilizzare nello sviluppo dei calcoli numerici; per questa ragione è stata introdotta da Lewis [54, 55] un’altra grandezza, legata in modo univoco al potenziale chimico mediante una relazione di tipo logaritmico, in modo che per \(\mu \to -\infty \) questa grandezza tenda ad un valore finito. Questa nuova grandezza è la fugacità ed è definita, per qualunque tipo di individuo chimico, allo stato gassoso, liquido, solido, o in soluzione, contenuto in un sistema generico, dalla seguente equazione differenziale:

\[
(45, \text{I}) \quad \left(\frac{d \mu_i}{dT} = R \frac{d P_i^*}{P_i^*} \right)_T
\]

ossia, integrando a \(T \) costante tra uno stato generico e lo stato attuale del sistema:

\[
(46, \text{I}) \quad \mu_i = \mu_i^0 + R T \ln \frac{P_i^*}{P_i^{*0}},
\]

ove:

\(\mu_i, P_i^* \) rispettivamente potenziale chimico e fugacità di \(i \) nel sistema considerato;

\(\mu_i^0, P_i^{*0} \) rispettivamente potenziale chimico e fugacità di \(i \) in un sistema (di riferimento) nel quale la composizione e la pressione hanno valori prefissati, la temperatura essendo quella del sistema originale,

\(T = \) temperatura assoluta del sistema.

Come viene meglio precisato più avanti, \(P^* \) ha le dimensioni di una pressione ed è generalmente espresso in atmosfere.

Per meglio comprendere la (45, I) ed il significato della fugacità, si consideri la seguente relazione valida per qualunque sostanza contenuta in un sistema generico [55] (*).

\[
(47, \text{I}) \quad \left(\frac{\partial \mu_i}{\partial P} \right)_{T,n_i,n_j,...} = \bar{v}_i
\]

ove:

\[
(48, \text{I}) \quad \bar{v}_i = \left(\frac{\partial V}{\partial n_i} \right)_{T,P,n_{\neq i}}
\]

(*) Le grandezze parziali molari, o molari, verranno indicate con lettere minuscole.
\(\bar{c}_i = \) volume parziale molare di \(i \) nel sistema considerato,
\(V = \) volume del sistema,
\(n_o, n_j, \ldots \), moli di \(i, j \ldots \), contenute nel sistema.

Per un gas puro avente comportamento ideale, la (45, I) diventa:

(49, I) \[\left(\frac{\partial \mu}{\partial P} \right)_T = v = \frac{RT}{P}. \]

Ossia, per una trasformazione isoterma:

(50, I) \[d\mu = RT \frac{dP}{P}. \]

Integrando a \(T \) costante tra uno stato di riferimento (ove \(\mu = \mu^0 \) e \(P = P^0 \)), risulta:

(51, I) \[\mu = \mu^0 + RT \ln \frac{P}{P^0}. \]

Nell’equazione (46, I) interviene il rapporto \(P^*/P^0 \) e pertanto il valore numerico della fugacità può essere noto a meno di una costante moltiplicativa; paragonando la (51, I) con la (46, I) si osserva che, nel caso dei gas, è conveniente scegliere questa costante in modo che nella regione in cui il gas ha comportamento ideale (basse pressioni), \(P^* \) coincida numericamente con \(P \). Anche per questa regione, \(P^* \) ha sempre le dimensioni di una pressione anche nel caso di sostanze allo stato non gassoso.

La forma dell’equazione (45, I), nella quale figura il rapporto \(P^*_i/P^0_i \), suggerisce di introdurre una nuova grandezza: l’attività [55], così definita:

(52, I) \[a_i = \frac{P^*_i}{P^0_i}, \]

\(a_i \) è adimensionale ed il suo valore numerico dipende ovviamente da quello di \(P^0_i \), ossia dallo stato di riferimento. Sostituendo la (52, I) nella (46, I) si ottiene:

(53, I) \[\mu_i = \mu^0_i + RT \ln a_i. \]

L’equazione (46, I), nella quale figura esplicitamente la fugacità, è particolarmente utile per lo studio dei sistemi gassosi, mentre la (53, I) è generalmente utilizzata per lo studio dei sistemi in fase condensata.
7. Stati di riferimento. — Nel paragrafo precedente si è visto che la differenza di potenziale chimico di un individuo chimico (elemento o composto) tra uno stato generico ed uno stato di riferimento, entrambi alla stessa temperatura, può essere calcolata con relazioni relativamente semplici nelle quali compaiono le attività; poiché il valore numerico di quest’ultima grandezza dipende dallo stato di riferimento, risulta evidente come la scelta di detto stato debba essere opportunamente effettuata. In pratica, questa scelta è dettata da sole ragioni di comodità. Ad esempio, per i sistemi gassosi è generalmente conveniente scegliere lo stato di riferimento in modo che, nelle condizioni in cui il sistema ha comportamento ideale (ossia a pressioni sufficientemente basse), il valore numerico dell’attività di ciascun gas contenuto nel sistema risulti uguale alla pressione parziale del gas stesso.

Per diversi soluti in soluzione acquosa, la scelta più opportuna sarà quella per la quale l’attività di ciascun soluto, in opportune condizioni, ad es. in soluzioni molto diluite, risulterà uguale alla molalità (moli/kg di solvente) del soluto considerato (').

a) Sistemi gassosi – Coefficiente di fugacità.

Generalmente, per un dato gas, sia puro, sia in miscela con altri, si adotta uno stato di riferimento che corrisponde ad uno stato ipotetico in cui la condizione del gas puro, alla temperatura considerata, è così definita (vedi fig. (1, I)):

\[(54, I)\]

\[P^{*o} = P^{*N} = P = 1 \text{ atm}.\]

Per distinguere questo stato di riferimento da altri che vedremo, adotteremo la lettera \(N\).

In base a tale scelta risulta che, per i gas, l’attività è numericamente uguale alla fugacità; inoltre, per pressioni sufficientemente basse, quando cioè i gas hanno comportamento ideale, l’attività del gas è numericamente uguale alla sua pressione (pressione parziale se il gas è in miscela con altri):

\[(55, I)\]

\[p^a_i = P^*_i = P\]

con il termine \(p^a_i\) si indica l’attività del componente \(i\) nel sistema considerato, relativa allo stato di riferimento definito con la (54, I), \(P^*_i\) = fugacità di \(i\) nelle condizioni di \(T\) e \(P\) del sistema.

Per i gas reali si avrà:

\[(56, I)\]

\[p^a_i = P^*_i = \varphi_i P_i = \varphi_i x_i P,\]

(’) Per alcune osservazioni sulla scelta degli stati di riferimento si vedano ad es. Prigogine e Defay [76], Rossini [79], Huggen, Watson e Ragatz [40].
ove:

\(\varphi, P_i \) e \(x_i \) = rispettivamente: coefficiente di fugacità, pressione parziale e frazione molare di \(i \);

\(P = \) pressione totale del sistema.

![Fig. (1, I) - Definizione dello stato di riferimento (stato ipotetico N) per le sostanze gasose (la scala delle fugacità è stata scelta in modo che risulti: \(P_{\varphi=0} = P_{\varphi=N} = 1 \, \text{atm} \).](image)

È opportuno osservare che lo stato di riferimento definito con la fig. (1, I) è stato scelto anche per altre ragioni di convenienza. In effetti, poiché il punto \(N \) della fig. (1, I) si trova sulla tangente all’origine della curva, talune grandezze molari (ad es. calore molare, entalpia molare) relative alle condizioni ipotetiche di riferimento, sono uguali a quelle del gas a bassissima pressione, ossia in condizioni in cui il gas ha comportamento ideale. Tale uguaglianza non è invece verificata per altre grandezze come ad es. l’entropia molare ed il potenziale chimico; in effetti, tenuta presente la (51, I), si osserva che per pressioni tendenti a zero, il potenziale chimico di un gas tende a meno infinito; nello stato di riferimento il potenziale chimico assume invece il valore finito \(\mu^o \).

Osserveremo che la scelta di uno stato di riferimento non corrispondente necessariamente ad uno stato reale del gas è del tutto lecita, poiché interessano sempre soltanto le variazioni di potenziale tra due stati. La differenza di potenziale chimico di un gas \(i \) tra due stati reali A e B, alla stessa temperatura, non dipende ovviamente dallo stato di riferimento ed è uguale a: \(R \, T \ln \left(\frac{P^*_i, A}{P^*_i, B} \right) \) oppure a \(R \, T \ln \left(\frac{a_{i, A}}{a_{i, B}} \right) \).

Il termine \(R \, T \ln \left(\frac{P^*_i}{P^*o} \right) \) rappresenta il lavoro di trasporto isotermo del gas dal suo stato ipotetico di riferimento allo stato in cui si trova realmente.
b) Sostanze allo stato liquido o solido – Influenza della pressione sulla fugacità di sostanze condensate.

Per le sostanze condensate non è in molti casi conveniente riferirsi esplicitamente alla fugacità e non è opportuno utilizzare delle attività riferite a \(P^* = 1 \text{ atm} \), poiché nella maggior parte dei casi si avrebbero per le attività dei valori numerici molto piccoli (a meno che la temperatura non sia relativamente elevata).

Per i liquidi o i solidi allo stato puro, e sovente anche per i composti organici che partecipano a reazioni in fase liquida, si assume generalmente quale stato di riferimento quello della sostanza allo stato puro alla temperatura considerata e a \(P = 1 \text{ atm} \) (oppure alla pressione del sistema).

Per le sostanze condensate, la fugacità è in generale scarsamente influenzata dalla pressione. Si dimostra inoltre che per lo stato di riferimento sopra definito, \(P^* \) è poco diverso dalla tensione di vapore della sostanza alla temperatura considerata.

Consideriamo in effetti un individuo chimico condensato, alla temperatura \(T \), allo stato puro, in un recipiente chiuso. La tensione di vapore della sostanza considerata sia uguale a \(P_s \). La fugacità dei vapori in queste condizioni è uguale a:

\[(57, I) \quad P_s^{**} = \varphi_s P_f,\]

ove:

\(P_s^{**}, \varphi_s \) = fugacità e rispettivamente coefficiente di fugacità dei vapori saturi alla temperatura del sistema (alla pressione \(P_s \)).

All’equilibrio tra le fasi presenti, i potenziali chimici — e quindi anche le fugacità — di una data sostanza sono tra loro uguali in tutte le fasi. Pertanto, la fugacità della sostanza in fase vapore è uguale alla fugacità della stessa sostanza nella fase condensata.

Supponiamo ora di comprimere la sostanza considerata (per es. un liquido), ad esempio con l’ausilio di un gas inerte, fino alla pressione \(P \) scelta per il riferimento. Integrandola la (47, I) applicata ad una sostanza pura, tra \(P_s \) e \(P \), tenute presenti la (45, I) e la (57, I), si ottiene, supponendo che il gas ausiliario sciogliendosi nel liquido considerato non ne modifichi il potenziale chimico:

\[(58, I) \quad P_P^{**} = P_s^{**} \exp \int_{P_s}^{P} \frac{v \, dP}{RT} = \varphi_s P_s \exp \int_{P_s}^{P} \frac{v \, dP}{RT}\]

ove:

\(P_P^{**} \) = fugacità del liquido puro alla \(T \) e \(P \) del sistema;
\(v \) = volume molare del liquido;
\(\varphi_s, P_s^{**} \) = coefficiente di fugacità e rispettivamente fugacità del vapore puro alla pressione \(P_s \).
Se \(v \) varia poco al variare della pressione, la (58, I), diventa:

\[
P_P^v = P_s^v \exp \frac{v(P - P_s)}{R T} = \varphi_s P_s \exp \frac{v(P - P_s)}{R T}.
\]

Fig. (2, I) - Determinazione della fugacità \(P^x \) nello stato ipotetico di riferimento per il soluto "i", in una soluzione (alla \(T \) e \(P \) del sistema - a \(P = 1 \) atm) la cui composizione è espressa in frazione molare. \(P^x \) è ottenuto estrapolando fino a \(x_i = 1 \) la tangente all’origine della curva rappresentata in diagramma \((P^i, x_i) \). Il punto \(p \) corrisponde al composto "i" puro.

Se \(P \) non è molto elevato (ad esempio alcune atmosfere), introducendo nella (59, I) dei valori numerici, si può constatare che il termine \(v(P - P_s)/R T \) è molto piccolo, ossia che:

\[
P_P^v \simeq \varphi_s P_s.
\]

Se i vaporini puri del liquido alla temperatura \(T \) si comportano praticamente come un gas ideale: \(\varphi_s \approx 1 \), e:

\[
P_P^v \approx P_s.
\]

c) Soluzioni di non elettroliti – Coefficiente di attività

Nel caso di individui chimici (gassosi, liquidi o solidi) in soluzione, è molto comodo far uso nei calcoli, delle frazioni molarie o delle molalità, anzichè delle fugacità. Inoltre è opportuno scegliere stati di riferimento tali che, per lo meno in certe condizioni, l’attività risulti numericamente uguale alla frazione molare oppure alla molalità.
Per un dato sistema soluto-solvente, sussiste, per il soluto, nelle condizioni in cui si trova nel sistema, una dipendenza biunivoca tra il suo potenziale chimico — e quindi la sua fugacità — e la sua frazione molare (o concentrazione o molalità). Si possono quindi tracciare diagrammi del tipo di quelli rappresentati nelle figg. (2, I) e (3, I).

![Diagram](image)

Fig. (3, I) - Determinazione della fugacità (P_i^*) nello stato ipotetico di riferimento per il soluto « i » in una soluzione (alla temperatura del sistema e a $P = 1$ atm) la cui composizione è espressa in molalità (moli/kg di solvente). P_i^{*0} è ottenuto estrapolando fino a $m_i = 1$ la tangente all'origine della curva.

Si traccino in questi due diagrammi le tangenti all'origine. Se si assume quale stato di riferimento il punto $\chi(\gamma_i^* = P_i^*)$, nel caso della fig. (2, I) e rispettivamente il punto $\gamma(\gamma_i^0 = P_i^{*0})$ (si tenga presente che $\gamma_i^* \neq \gamma_i^{*0}$) nel caso della fig. (3, I), per soluzioni sufficientemente diluite, si ottiene rispettivamente per i due stati di riferimento:

\begin{align*}
(62, \ I) & \quad \gamma a_i = x_i \\
(63, \ I) & \quad m a_i = m_i,
\end{align*}

ove γa_i e $m a_i$ sono le attività del composto « i », nella soluzione, corrispondenti rispettivamente agli stati di riferimento della fig. (2, I) e della fig. (3, I).

Per soluzioni concentrate, per le quali non valgono la (62, I) e la (63, I), si pone:

\begin{align*}
(64, \ I) & \quad \gamma a_i = (\gamma \gamma_i)(x_i) \\
(65, \ I) & \quad m a_i = (\gamma \gamma_i)(m_i),
\end{align*}
ove \(z\gamma_i \) e \(m\gamma_i \) prendono il nome di coefficienti di attività [55]. Si nota che \(z\gamma_i \neq m\gamma_i \) come era \(z\alpha_i \neq m\alpha_i \) (8).

Lo stato di riferimento definito con la fig. (2, I) — alla pressione del sistema — può essere scelto vantaggiosamente ad esempio per gas disciolti; si consideri in effetti un sistema gas-liquido che segue la legge di HENRY:

\[
(66, \ I) \quad P_i = k_i x_i.
\]

\((k_i = \text{coefficiente di HENRY})\)

Per pressioni sufficientemente basse:

\[
(67, \ I) \quad P_i = P_i^* = k_i x_i.
\]

Nello stato ipotetico di riferimento (punto \(\chi \) della fig. (2, I)) risulta:

\[
(68, \ I) \quad P_i^* = k_i.
\]

Per non-elettroliti in soluzione acquosa si adotta generalmente il riferimento della fig. (3, I) a \(P = 1 \) atm. In effetti, in letteratura vengono riportati i valori di diverse funzioni termodinamiche per diverse temperature e per \(P = 1 \) atm, per sostanze in soluzione acquosa, nello stato ipotetico corrispondente al punto \(\varepsilon \) della fig. (3, I) (stato che indicheremo con l’espressione: \(aQ \) (ip.), \(m = 1 \))

Questo stato di riferimento si chiama anche « a diluizione infinita ». In effetti, analogamente a quanto si è visto per lo stato ipotetico di riferimento dei gas, talune grandezze termodinamiche molarì del soluto (quelle non dipendenti dalla concentrazione) nello stato ipotetico a molalità unitaria, hanno lo stesso valore di quelle relative alla stessa soluzione a diluizione infinita (alla stessa temperatura ed a pressione unitaria), poiché il punto \(\varepsilon \) si trova sulla tangente all’origine. Ad es. l’entalpia parziale molare e il calore molare di un soluto in un dato solvente nello stato ipotetico a molalità unitaria, sono uguali alle corrispondenti grandezze relative alla stessa soluzione a diluizione infinita. Tale relazione non è invece verificata nè per l’entropia, nè per i potenziali chimici o termodinamici, per le stesse ragioni viste nel caso dei gas.

d) Soluzioni acquose di elettroliti deboli

Si consideri un elettrolito debole MX in soluzione acquosa; si avrà:

\[
(69, \ I) \quad MX \rightleftharpoons M^+ + X^-.
\]

Poiché l’elettrolito è debole, nel caso di soluzioni non troppo diluite, sarà sempre possibile misurare sperimentalmente la concentrazione della specie MX

(8) Per il confronto tra le attività ed i coefficienti di attività relativi a diversi sistemi di riferimento si veda ad es. ROSSINI [79] e HUGGEN WATSON e RAGAZZI [49].
non dissociata. Lo stato di riferimento più conveniente, sia per dette specie dissi-
ociate, sia per gli ioni, può quindi ancora essere quello della fig. (3, I), ossia: stato
ipotetico a molalità unitaria. Pertanto, per soluzioni sufficientemente diluite,
si avrà:

\[m^{a_{MX}} = m_{MX}; \quad m^{a_{M^+}} = m_{M^+}; \quad m^{a_{X^-}} = m_{X^-}. \]

(70, I)

e) Soluzioni acquose di elettroliti forti

Nel caso degli elettroliti forti, la concentrazione degli ioni provenienti dalla
dissociazione dell'elettrolito può ancora essere misurata; pertanto, lo stato di
riferimento più conveniente per ciascun ione, sarà ancora quello ipotetico a mo-
lalità unitaria della fig. (3, I). La valutazione della concentrazione delle specie
MX non dissociate risulta invece alquanto difficoltosa; pertanto, per dette specie,
si deve ricorrere ad uno stato di riferimento diverso da quelli fino ad ora riportati.

Indicando con \(m_{a_2}, m_{a_+} \) e \(m_{a_-} \) le attività rispettivamente delle specie MX
non dissociate e degli ioni \(M^+ \) e \(X^- \), si è convenuto di scegliere per la specie MX
non dissociata uno stato di riferimento a molalità unitaria tale che sia:

\[m^{a_2} = (m_{a_+}) (m_{a_-}). \]

(71, I)

In un prossimo paragrafo ritorneremo su questo argomento e discuteremo
le conseguenze derivanti da questa scelta.

8. Soluzioni ideali e soluzioni reali. — Definiremo soluzione o miscela ideale (di gas, di liquidi, o di solidi) una soluzione (o miscela omogenea) nella quale
il volume parziale molare di ciascun componente è indipendente dalla compo-
zione del sistema ed è uguale al volume molare del componente considerato nelle
condizioni di \(T \) e \(P \) del sistema.

\[\bar{v}_i = \left(\frac{\partial V}{\partial n_i} \right)_{T,P,n_{j\neq i}} = v^p_i \]

(72, I)

ove:

\(V \) = volume del sistema;
\(\bar{v}_i \) = volume parziale molare del componente \(i \) nel sistema;
\(v^p_i \) = volume molare del composto \(i \) allo stato puro a \(T \) e \(P \) del sistema;
\(n_i \) = numero di molecole di \(i \) nel sistema.

Alcuni autori, come ad es. PRIGOINE e DEFAY [76], definiscono perfette le
soluzioni aventi questa caratteristica per qualsiasi composizione.
Le soluzioni ideali seguono quindi la legge di additività dei volumi.
Anche la fugacità di ciascun componente di una soluzione ideale (per l’intero
intervallo di pressione 0, \(P \) è legata alla fugacità del componente considerato, allo stato puro alla \(T \) e \(P \) del sistema, da una relazione semplice.

Si considerino le relazioni (45, I) e (47, I):

\[
(73, \text{ I}) \quad \left(\frac{\partial \mu_i}{\partial P} \right)_T = \bar{v}_i,
\]

\[
(74, \text{ I}) \quad \left(d \mu_i = R \, T \, \frac{d P_i^*}{P_i^*} \right)_T.
\]

Da queste due espressioni, risulta, a \(T \) costante:

\[
(75, \text{ I}) \quad \frac{d P_i^*}{P_i^*} = \frac{\bar{v}_i}{RT}.
\]

Integrando tra una pressione \(P_e \) sufficientemente piccola (in modo che il fluido si comporti, a detta pressione, come un gas ideale) e la pressione \(P \), si ottiene:

\[
(76, \text{ I}) \quad \ln \frac{P_i^*}{P_{i,e}} = \ln \frac{P_i^*}{x_i P_e} = \frac{1}{RT} \int_{P_e}^{P} \bar{v}_i \, dP;
\]

ove:

\(P_{i,e} \) e \(x_i \) = rispettivamente pressione parziale e frazione molare del componente "i" nel sistema, alla pressione totale \(P \).

Per il componente "i" allo stato puro sussiste la seguente relazione:

\[
(77, \text{ I}) \quad \ln \frac{P_i^{e,p}}{P_e} = \frac{1}{RT} \int_{P_e}^{P} \bar{v}_i^p \, dP.
\]

ove:

\(P_i^{e,p} \) = fugacità di "i" allo stato puro alla \(T \) e \(P \) del sistema. Sottraendo la (77, I) dalla (76, I) si ottiene:

\[
(78, \text{ I}) \quad \ln \frac{P_i^*}{x_i P_i^{e,p}} = \frac{1}{RT} \int_{P_e}^{P} (\bar{v}_i - \bar{v}_i^p) \, dP.
\]

Se \(\bar{v}_i = \bar{v}_i^p \) per l’intero campo di pressione 0, \(P \), risulta:

\[
(79, \text{ I}) \quad P_i^* = x_i P_i^{e,p}.
\]

Ossia, la fugacità di ciascun componente di una soluzione ideale (per l’intero campo di pressione 0, \(P \)) è uguale al prodotto della fugacità del composto puro alla \(T \) e \(P \) del sistema per la frazione molare del componente considerato nella soluzione.
Ne deriva che se nel caso di una soluzione ideale si sceglie quale stato di riferimento per ciascun componente, detto componente allo stato puro alla T e P del sistema, la sua attività risulta uguale alla sua frazione molare; in effetti, dalla (79, I) si ha: $x_i = P_i^* / P_{i}^{*p}$, se $P_i^{*o} = P_i^{*p}$ si avrà per definizione:

\[(80, I) \quad x_i = \frac{P_i^*}{P_{i}^{*p}} = \frac{P_i^*}{P_{i}^{*o}} = a_i.\]

Per ciascun componente di una soluzione ideale, supposto di scegliere lo stato di riferimento qui sopra preciso, risulta quindi:

\[(81, I) \quad \mu_i = \mu_i^p + RT \ln x_i,\]

ove:

μ_i^p = potenziale chimico del composto i allo stato puro alla T e P del sistema.

Fig. (4, I) - Stato di riferimento (p) corrispondente all'individuo chimico puro alla T e P del sistema.

Per soluzioni non ideali la (79, I) non è più verificata, ma fermi restando gli stati di riferimento sopra definiti, si può scrivere:

\[(82, I) \quad P_i^* = \gamma_i x_i P_{i}^{*p},\]

ove:

γ_i è un coefficiente di attività numericamente diverso da quelli fin qui definiti, poiché è relativo ad uno stato di riferimento (vedi fig. (4, I)) diverso da quelli definiti nelle figg. (2, I) e (3, I).
Per una soluzione a comportamento ideale in tutto il campo di composizione, i punti p e χ della fig. (2, I) coincidono e la curva diventa una retta (così dicasi per il diagramma della fig. (4, I)), purché questi diagrammi siano stati costruiti per una pressione uguale alla pressione del sistema; in effetti, solo in questo caso la relazione (79, I) è verificata, poiché P^*P è la fugacità del composto « i » puro alla pressione del sistema e non, ad esempio, a pressione unitaria.

Lo stato di riferimento definito con la fig. (4, I), applicato sia alla fase liquida che alla fase vapore, è particolarmente indicato per lo studio degli equilibri liquido vapore, che verrà trattato in un volume successivo.

9. Relazione tra ΔG e ΔG^0 - Costanti di equilibrio. — Si consideri un sistema omogeneo ad una data temperatura e pressione, costituito da sostanze suscettibili di reagire tra di loro secondo una data reazione.

Si indichi genericamente con μ_i^0 il potenziale chimico di ciascuna sostanza nel proprio stato di riferimento, indipendentemente dal tipo di riferimento scelto. Sostituendo la (53, I) nella (31, I) e posto (*) :

$\Delta G^0 = \sum_i n_i \mu_i^0$,

testo sinistra (10):

$\Delta G = \Delta G^0 + R T \sum_i \ln (a_i) r_i$.

In condizioni di equilibrio termodinamico: $\Delta G = 0$; pertanto si avrà:

$\Delta G^0 = - R T \sum_i \ln (a_{i,eq}) r_i$,

ove:

$a_{i,eq}$ è l'attività del componente « i » nel sistema considerato in condizioni di equilibrio termodinamico.

Poiché il valore numerico di ΔG^0 dipende soltanto dal riferimento scelto per ciascuna sostanza che prende parte alla reazione, ne consegue che $\Delta G^0 e \sum (\ln a_{i,eq}) r_i$, sono indipendenti dal grado di avanzamento (mentre non lo era ΔG).

Si può quindi porre:

$\Delta G^0 = - R T \sum_i \ln (a_{i,eq}) r_i = - R T \ln K$,

ove:

$K = \text{costante di equilibrio}$.

(*) - Il significato corretto di ΔG^0 verrà meglio precisato in un paragrafo successivo.

(*) - In quanto segue, l'attività di una sostanza « i » verrà sempre indicata « a_i » indipendentemente dal tipo di riferimento scelto. Si tenga tuttavia ben presente che il valore numerico dell'attività di una data sostanza dipende sempre dallo stato di riferimento.
Sostituendo la (86, I) nella (84, I) si ottiene:

\[(87, I) \quad \Delta G = -RT \ln K + RT \sum_i \ln(a_i)^{r_i}.\]

Nel caso di reazioni che avvengono in sistemi eterogenei, tenuta presente la relazione (44, I), si può ancora definire una costante \(K \) legata al \(\Delta G^o \) dalla relazione (86, I).

Pertanto, per una reazione generica:

\[(88, I) \quad a \, A + b \, B \rightleftharpoons r \, R + s \, S,\]

la costante di equilibrio si potrà sempre esprimere nella forma:

\[(89, I) \quad K = \frac{(a_R)^{r}(a_S)^{s}}{(a_A)^{a}(a_B)^{b}}.\]

Per ciascuna sostanza che partecipa alla reazione, lo stato di riferimento sarà scelto nel modo più conveniente; questa scelta condiziona evidentemente il valore numerico sia del \(\Delta G^o \) di reazione, sia delle attività che compaiono nella (89, I).

Osserveremo che se gli stati di riferimento sono stati scelti per ciascun reagente alla temperatura desiderata e ad una pressione assegnata (non necessariamente uguale a quella che si esercita sul sistema) ad es. \(P = 1 \) atm, \(K \) risulta funzione della sola temperatura. Se invece un riferimento almeno è stato scelto alla pressione del sistema, \(K \) risulta funzione oltreché della temperatura, anche della pressione.

Nel caso di reazioni tra sostanze gassose, si sceglie generalmente per ciascuna sostanza, lo stato di riferimento definito nella fig. (1, I). Tenuta presente la (56, I), la (89, I) diventa:

\[(90, I) \quad K = K_{p*} = \frac{(P_R)^{r}(P_S)^{s}}{(P_A)^{a}(P_B)^{b}} = \frac{(\gamma_R)^{r}(\gamma_S)^{s}}{(\gamma_A)^{a}(\gamma_B)^{b}} \cdot \frac{(P_R)^{r}(P_S)^{s}}{(P_A)^{a}(P_B)^{b}} = \]

\[= \frac{(\gamma_R)^{r}(\gamma_S)^{s}}{(\gamma_A)^{a}(\gamma_B)^{b}} \cdot \frac{(x_R)^{r}(x_S)^{s}}{(x_A)^{a}(x_B)^{b}} \cdot P^{(r+s)-(a+b)}.\]

In questo caso, \(K_{p*} \) è funzione della sola temperatura (e non della pressione), poiché il riferimento, per ciascun gas che prende parte alla reazione, è stato scelto per un valore definito \((P = 1 \text{ atm}) \) della pressione.

Se la reazione considerata è una reazione che avviene in soluzione e se per ciascuna sostanza che vi partecipa è stato scelto il riferimento della fig. (3, I), risulta, tenuta presente la (65, I):

\[(91, I) \quad K = K_a = \frac{(a_R)^{r}(a_S)^{s}}{(a_A)^{a}(a_B)^{b}} = \frac{(\gamma_R)^{r}(\gamma_S)^{s}}{(\gamma_A)^{a}(\gamma_B)^{b}} \cdot \frac{(m_R)^{r}(m_S)^{s}}{(m_A)^{a}(m_B)^{b}}.\]
Anche in questo caso, poiché gli stati di riferimento sono definiti a pressione unitaria, K_a è indipendente dalla pressione; se invece fossero stati definiti alla pressione del sistema, K_a sarebbe funzione — teoricamente — anche della pressione; ma per sistemi condensati tale dipendenza può generalmente essere trascurata, sempre che la pressione non sia molto elevata (ad es. inferiore a poche decine di atmosfere).

Relazioni analoghe alle precedenti si possono facilmente dedurre per altri stati di riferimento.

Se alla reazione (88, I) partecipano gas (ad es. B e R) e sostanze (ad es. A e S) allo stato condensato (liquido o solido) conviene scegliere per i gas lo stato di riferimento a $P^* = 1$ atm e per ciascuna delle altre sostanze, la sostanza allo stato puro, oppure un altro degli stati definiti nel paragrafo precedente. In questo caso la (89, I) si può scrivere:

\[
K = \frac{(P_R^*)^r(a_S)^s}{(a_A)^a(P_B^*)^b}.
\]

Se una o più sostanze sono presenti in una fase del sistema allo stato puro e se, per dette sostanze, il ΔG^o di formazione\(^{(1)}\) utilizzato per calcolare il ΔG^o di reazione è quello relativo alla sostanza allo stato puro alla pressione e alla temperatura del sistema, l’attività di dette sostanze nel sistema considerato è evidentemente uguale ad uno. Si consideri ad es. la reazione di decomposizione di CaCO$_3$ puro a CaO e CO$_2$. I due solidi sono presenti nel sistema in fasi separate e allo stato puro, se la K di equilibrio di questa reazione è stata calcolata utilizzando i ΔG^o di formazione di CaCO$_3$ e di CaO allo stato solido ed il ΔG^o di formazione di CO$_2$ allo stato gassoso a $P^* = 1$ atm, risulta:

\[
K = \frac{a_{\text{CaO}} P_{\text{CO}_2}^*}{a_{\text{CaCO}_3}} = P_{\text{CO}_2}^*.
\]

Se la temperatura è sufficientemente alta in modo che il CO$_2$ si comporti come un gas ideale, si ha: $K = P_{\text{CO}_2}^*$.

Per meglio mettere in evidenza le relazioni che intercorrono tra ΔG, ΔG^o e costante di equilibrio, si consideri a titolo esemplificativo una reazione tra gas ideali che avvenga senza variazione del numero di molecole: $A + B \rightleftharpoons R + S$.

Supponiamo che la frazione molare di ciascun reagente si possa esprimere nel modo seguente: $x_A = x_B = x_o - x; x_R = x_S = x$. Il ΔG della reazione considerata sarà uguale a:

\[
\Delta G = \Delta G^o + R T \ln \frac{x}{(x_o - x)^2}.
\]

\(^{(1)}\) I ΔG^o di formazione sono definiti nel paragrafo seguente.
Questa relazione consente di calcolare ΔG in funzione di x. L’andamento qualitativo di questa funzione è riportato nella fig. (5, I).

Si osserva che se inizialmente il sistema non contiene R o S, il ΔG è uguale $a - \infty$. Quando invece sono assenti A e B, ΔG è uguale $a + \infty$. Nel caso considerato $\Delta G = \Delta G^\circ$ quando $x = x_0/2$. Partendo da una composizione qualunque, il sistema mantenuto a temperatura costante evolverà spontaneamente (o con l’ausilio di catalizzatori adatti) verso l’equilibrio termodinamico, in corrispondenza del quale $x = x_0/(1 + \exp \Delta G^\circ/R T)$.

10. Entalpia libera, entalpia ed entropia standard di formazione dei composti. — I ΔG° di reazione, noti i quali si calcolano le costanti di equilibrio, si calcolano a loro volta con l’ausilio delle entalpie libere standard di formazione dei composti dagli elementi.

Si consideri ad es. la reazione:

(93, I) \[\text{CO} + 2 \text{H}_2 \rightleftharpoons \text{CH}_3\text{OH}, \]

per la quale, tenuta presente la (83, I):

(94, I) \[\Delta G^\circ = \mu_{\text{CH}_3\text{OH}}^o - \mu_{\text{CO}}^o - 2 \mu_{\text{H}_2}^o. \]

Sommando e sottraendo quantità uguali, la (94, I) si può scrivere:

(95, I) \[\Delta G^\circ = (\mu_{\text{CH}_3\text{OH}}^o - \mu_{\text{O}_2}^o - 2 \mu_{\text{H}_2}^o - \frac{1}{2} \mu_{\text{O}_2}^o) - (\mu_{\text{CO}}^o - \mu_{\text{O}_2}^o - \frac{1}{2} \mu_{\text{O}_2}^o) - (2 \mu_{\text{H}_2}^o - 2 \mu_{\text{H}_2}^o) \]
ove \(\mu_i^o \) è il potenziale chimico della sostanza «i» alla temperatura considerata e nel proprio stato di riferimento. (Per il carbonio si sceglie quale stato di riferimento la grafite a \(P = 1 \text{ atm} \)).

Per ciascuna delle espressioni contenute tra parentesi nella (95, I) si ponga:

\[
\begin{align*}
(96, \ I) \quad \Delta G_{\text{CH}_2\text{OH}}^o &= \mu_{\text{CH}_2\text{OH}}^o - \mu_C^o - 2 \mu_{\text{H}_2}^o - \frac{1}{2} \mu_{\text{O}_2}^o, \\
(97, \ I) \quad \Delta G_{\text{CO}}^o &= \mu_{\text{CO}}^o - \mu_C^o - \frac{1}{2} \mu_{\text{O}_2}^o, \\
(98, \ I) \quad \Delta G_{\text{H}_2}^o &= \mu_{\text{H}_2}^o - \mu_{\text{H}_2}^o = 0.
\end{align*}
\]

Sostituendo nella (95, I) si ottiene, per la reazione considerata:

\[
(99, \ I) \quad \Delta G^o = \Delta G_{\text{CH}_2\text{OH}}^o - \Delta G_{\text{CO}}^o.
\]

Per una reazione generica si ha:

\[
(100, \ I) \quad \Delta G^o = \sum_i v_i \Delta G_i^o.
\]

\(\Delta G_i^o \) prende il nome di entalpia libera standard di formazione della sostanza «i» dagli elementi, alla temperatura considerata.

Per ciascun individuo chimico «j» (composto o elemento) che figura nelle (96-98, I), si sceglie uno stato di riferimento in cui la sostanza considerata è allo stato puro; pertanto si avrà:

\[
(101, \ I) \quad \mu_j^o = h_j^o - T s_j^o,
\]

ove \(\mu_j^o, h_j^o \) e \(s_j^o \) sono rispettivamente l'entalpia libera, l'entalpia e l'entropia molar di sostanza «j» allo stato puro, nel proprio stato di riferimento.

Si deduce quindi facilmente:

\[
(102, \ I) \quad \Delta G_i^o = \Delta H_i^o - T \Delta S_i^o,
\]

ove, ad esempio per la reazione (93, I):

\[
\begin{align*}
(103, \ I) \quad \Delta H_{\text{CH}_2\text{OH}}^o &= h_{\text{CH}_2\text{OH}}^o - h_C^o - 2 h_{\text{H}_2}^o - \frac{1}{2} h_{\text{O}_2}^o, \\
(104, \ I) \quad \Delta H_{\text{CO}}^o &= h_{\text{CO}}^o - h_C^o - \frac{1}{2} h_{\text{O}_2}^o, \\
(105, \ I) \quad \Delta H_{\text{H}_2}^o &= h_{\text{H}_2}^o - h_{\text{H}_2}^o = 0.
\end{align*}
\]

Relazioni analoghe si hanno per le entropie.

\(\Delta H_i^o \) e \(\Delta S_i^o \) prendono rispettivamente il nome di entalpia ed entropia standard di formazione della sostanza «i» dagli elementi, alla temperatura considerata.

Relazioni del tutto simili alla (102, I) si hanno per \(\Delta G_i^o \) di formazione dagli
elementi di composti in soluzione (ad es. acquosa), per i quali si sceglie lo stato di riferimento a molalità unitaria definito nella fig. (3, I). In questo caso la (101, I) si deve scrivere per la sostanza \(i\) in soluzione acquosa nello stato ipotetico di riferimento:

\[
\mu_{i,m=1}^{\text{aq(lp)}} = h_{i,m=1}^{\text{aq(lp)}} - T s_{i,m=1}^{\text{aq(lp)}}.
\]

La (102, I) si scrive a sua volta:

\[
\Delta G_{i,m=1}^{\text{aq(lp)}} = \Delta H_{i,m=1}^{\text{aq(lp)}} - T \Delta S_{i,m=1}^{\text{aq(lp)}}.
\]

Tenute presenti le osservazioni riportate in un paragrafo precedente risulta:

\[
\Delta H_{i,m=1}^{\text{aq(lp)}} = \Delta H_{i,m=\rightarrow \infty}^{\text{aq}}
\]
ove \(\Delta H_{i,m=\rightarrow \infty}^{\text{aq}}\) è l’entalpia di formazione dagli elementi del soluto \(i\), in una soluzione a diluizione infinita. Per le considerazioni riportate in un paragrafo precedente, una relazione simile alla (97, I) non è invece verificata per \(\Delta G_i^o\) e quindi neppure per i \(\Delta S_i^o\).

I valori numerici delle funzioni termodinamiche standard definite in questo paragrafo, sono riportati nella letteratura tecnica per numerosi individui chimici a diverse temperature. Alcuni di questi valori verranno riportati nel capitolo II.

11. Osservazioni sul significato di \(\Delta G^o\), \(\Delta H^o\) e \(\Delta S^o\). — Si consideri una reazione tra individui chimici allo stato gassoso. Supposto di aver scelto per ciascuna sostanza lo stato di riferimento \(P^o = P = 1 \text{ atm}\) alla \(T\) del sistema, e tenute presenti le relazioni riportate nel paragrafo precedente, si possono scrivere per la reazione considerata, le seguenti relazioni:

\[
\Delta G^o = \Delta H^o - T \Delta S^o = \sum_i v_i \mu_i^o = \sum_i v_i h_i^o - T \sum_i v_i s_i^o
\]

\[
\Delta H^o = \sum_i v_i h_i^o \quad \text{e} \quad \Delta S^o = \sum_i v_i s_i^o
\]
ove:

\(\mu_i^o\), \(h_i^o\) e \(s_i^o\) = rispettivamente potenziale chimico, entalpia, ed entropia molare di ciascun individuo chimico (elemento o composto) nella propria condizione di riferimento, che prende parte alla reazione considerata. (Queste grandezze, per \(T \neq 0 \text{ K}\), sono tutte diverse da zero, anche per gli elementi).

Questa relazione mostra che i \(\Delta G^o\), \(\Delta H^o\) e \(\Delta S^o\) della reazione considerata, sono uguali alla sommatoria algebrica (tenuto conto dei coefficienti stochiometrici della reazione) delle grandezze corrispondenti per ciascun reagente o prodotto nelle proprie condizioni di riferimento. Questa definizione risulta particolarmente utile per il calcolo delle funzioni termodinamiche sopra citate.

Si possono però attribuire a \(\Delta G^o\), \(\Delta H^o\) e \(\Delta S^o\) altri significati.
Si considerino ad es. due sistemi ideali e ipotetici contenenti l’uno i soli reagenti e l’altro i soli prodotti della reazione, alla T considerata, nei quali per ciascuno dei componenti \(i \) si abbia \(P_i^* = P_i = 1 \) atm.

Ciascuna delle funzioni termodinamiche sopra definite \((\Delta G^0, \Delta H^0 e \Delta S^0)\) rappresenta la differenza tra le funzioni di stato corrispondenti \((\mu^0, h^0 e s^0)\) per i due sistemi considerati.

Si può osservare che in base alla due definizioni sopra riportate, il simbolo \(\Delta \) non assume più direttamente il significato dell’operatore \((\partial/\partial \xi)_{T,P}\) introdotto in un paragrafo precedente. Si consideri allora un sistema ideale e ipotetico contenente tutti i gas che prendono parte alla reazione considerata, in condizioni tali che per ciascuno di essi si abbia \(P_i^* = P_i = 1 \) atm (indipendentemente dal valore dei coefficienti stoechiometrici della reazione).

Per detto sistema si avrà:

\[
\begin{align*}
(111, \text{I}) & \quad \sum_i G_i^0 = \sum_i H_i^0 - T \sum_i S_i^0 = G_{id}^0, \\
(112, \text{I}) & \quad \sum_i H_i^0 = H_{id}^0, \\
(113, \text{I}) & \quad \sum_i S_i^0 = S_{id}^0,
\end{align*}
\]

ove \(G_i^0, H_i^0 \) e \(S_i^0 \) sono le corrispondenti grandezze relative a ciascun componente \(i \) nel proprio stato di riferimento alla \(T \) considerata. \(G_{id}^0, H_{id}^0 \) e \(S_{id}^0 \) sono le corrispondenti grandezze del sistema ideale e ipotetico contenente tutti i reagenti e prodotti della reazione, nelle condizioni sopra precise.

Tenuta presente la (31, I), differenziando la (111, I) rispetto al grado di avanzamento della reazione considerata, si trova:

\[
\begin{align*}
(114, \text{I}) & \quad \left(\frac{\partial G_{id}^0}{\partial \xi} \right)_{T,P_{id}} = \sum_i v_i \mu_i^0 = \Delta G^0.
\end{align*}
\]

\(\Delta G^0 \) rappresenta quindi la derivata parziale a \(T \) e \(P \) costanti, rispetto al grado di avanzamento della reazione considerata, dell’entalpia libera \(G_{id}^0 \) di un sistema ideale ipotetico, contenente ciascun componente \(i \) che prende parte alla reazione, in condizioni tali che sia \(P_i^* = P_i = 1 \) atm; la pressione \(P_{id} \) alla quale si effettua la derivazione (103, I) è quindi quella del sistema ipotetico e non quella effettiva del sistema.

Allo stesso modo si deducono le seguenti relazioni:

\[
\begin{align*}
(115, \text{I}) & \quad \left(\frac{\partial H_{id}^0}{\partial \xi} \right)_{T,P} = \Delta H_{id}^0, \\
(116, \text{I}) & \quad \left(\frac{\partial S_{id}^0}{\partial \xi} \right)_{T,P} = \Delta S_{id}^0.
\end{align*}
\]
Si può infine fare un'ultima osservazione. A tale scopo si scriva la (84, I) nel modo seguente:

\[(117, \ I)\quad \Delta G = \left(\frac{\partial G}{\partial \xi} \right)_{T,P} = \Delta G^o + R T \sum_i \ln (a_i)^{x_i} ,\]

ove:

\[P = \text{pressione del sistema.}\]

Si considerì un sistema reale contenente ciascun reagente o prodotto \(i\) gassoso che prende parte alla reazione, in condizioni tali che sia \(P_i^* = 1 \text{ atm}\) e quindi \(a_i = 1\). Per i gas contenuti in questo sistema, non sarà più \(P_i = 1 \text{ atm}\). Si indichi con \(G_{\text{reale}}^o\) il valore di \(G\) per il sistema considerato. (Si osserva che \(G_{\text{reale}}^o = G_{\text{id. sopra definito}}^o\). Tenuta presente la (117, I) si deduce:

\[(118, \ I)\quad \left(\frac{\partial G_{\text{reale}}^o}{\partial \xi} \right)_{T,P_{\text{rif}}} = \Delta G^o ,\]

(ove \(P_{\text{rif.}}\) è la pressione del sistema reale di riferimento sopra definito).

\(\Delta G^o\) rappresenta quindi anche la derivata parziale a \(T\) e \(P_{\text{rif.}}\) costanti, rispetto al grado di avanzamento della reazione considerata, dell’entalpia libera \(G_{\text{reale}}^o\) di un sistema reale contenente ciascun reagente o prodotto \(i\) che prende parte alla reazione, in condizioni tali che sia \(P_i^* = 1 \text{ atm}\), ossia \(a_i = 1\).

Considerazioni del tutto analoghe potevano essere fatte per una reazione tra elettroliti in soluzione acquosa. In effetti, anche in questo caso è possibile definire sistemi (ipotetici o reali) nei quali è unitaria l’attività di ciascun componente, purché ci si riferisca allo stato ipotetico di riferimento a molalità unitaria.

Se invece si fosse considerata una reazione in fase liquida (ad es. omogenea) e se per ciascun reagente o prodotto fosse stato scelto come stato di riferimento la sostanza considerata allo stato puro e alla \(T\) e \(P\) del sistema, non sarebbe stato possibile definire sistemi (ipotetici o reali) contenenti ciascun componente \(i\) in condizioni tali da avere \(a_i = 1\). In questo caso, la miglior definizione delle funzioni termodinamiche standard è quella rappresentata con le equazioni (109 e 110, I); per poter definire una funzione \(G_{\text{reale}}^o\) tale da poter stabilire una relazione simile alla (118, I), si dovrebbe fare riferimento ad un sistema (anche reale) avente una composizione tale che risulti \(\sum_i \ln (a_i)^{x_i} = 0\) ossia \(\Delta G = \Delta G_{\text{reale}}^o\) (vedi 117, I).

Dalle considerazioni riportate in questo paragrafo, mentre emerge la semplificità del calcolo dei \(\Delta G^o\) di reazione e quindi delle costanti di equilibrio, si può osservare in particolare che i \(\Delta H^o\) di reazione non sono teoricamente uguali al calore di reazione — con il segno cambiato — delle reazioni corrispondenti. La valutazione dei \(\Delta H\) reali di reazione verrà discussa in un capitolo successivo.
12. Reazioni termodinamicamente favorite e reazioni termodinamicamente non favorite. — Diremo per convenzione che una reazione è termodinamicamente favorita quando il suo ΔG° è negativo (ossia quando la K di equilibrio è > 1).

Se tale condizione è verificata, ne deriva che un sistema mantenuto alla temperatura considerata e contenente prodotti e reagenti che partecipano alla reazione, ciascuno in condizioni di attività unitaria, evolverà — spontaneamente o con l’ausilio di catalizzatori — nel senso della reazione considerata.

Tenuta presente la (109, I), le reazioni possono essere classificate a questo riguardo in base al segno dei propri ΔH° e ΔS°, come segue:

- $\Delta H^\circ < 0$ e $\Delta S^\circ > 0$: reazione esotermica molto favorita
- $\Delta H^\circ < 0$ e $\Delta S^\circ < 0$: reazione esotermica interessata da un equilibrio
- $\Delta H^\circ > 0$ e $\Delta S^\circ > 0$: reazione endotermica interessata ad un equilibrio
- $\Delta H^\circ > 0$ e $\Delta S^\circ < 0$: reazione endotermica non favorita.

Si può ancora osservare che all’aumentare della temperatura il valore numerico di ΔG° (e quindi di K_{eq}) è sempre più influenzato dal ΔS° di reazione, mentre alle basse temperature ΔG° dipende soprattutto da ΔH°.

13. Stabilità termodinamica dei composti rispetto agli elementi. — Se l’entalpia libera standard di formazione a partire dagli elementi (ΔG_i°) di un composto è negativa, diremo che la formazione di questo composto dagli elementi è termodinamicamente favorita. Ciò significa che il composto in esame è, nelle condizioni di riferimento, termodinamicamente più stabile degli elementi che lo costituiscono, essi stessi nelle proprie condizioni di riferimento.

14. Osservazioni sull’enthalpia libera standard di formazione a T e P costanti degli ioni e degli elettroliti in soluzione acquosa. — Nella letteratura tecnica [80] vengono riportati i valori delle entalpiedi libere standard di formazione (ΔG°) per ioni in soluzione acquosa ($m = 1$, stato ipotetico); si trovano anche valori di ΔH per soluzioni reali, per diversi valori della molalità.

La reazione alla quale ci si riferisce per definire il ΔG° di formazione di uno ione in soluzione, deve evidentemente essere elettricamente neutra; pertanto, oltre a quella dello ione del quale si vuole calcolare il ΔG°, deve figurare nella reazione in questione un’altra carica elettrica. Da un punto di vista teorico, detta carica potrebbe essere — arbitrariamente — quella di un elettrone libero, oppure quella di un altro ione. In pratica è stato scelto a questo riguardo lo ione H^+.

Pertanto i ΔG di formazione, ad es. degli ioni Cl^- e Cu^+ in soluzione acquosa,
si riferiscono rispettivamente alle seguenti reazioni:

\begin{align*}
(119, \ I) & \quad \left(\frac{1}{2} \text{Cl}_2 (g) + \frac{1}{2} \text{H}_2 (g) \right) \rightarrow \text{H}^+ + \text{Cl}^- , \\
(120, \ I) & \quad \text{Cu} + \text{H}^+ \rightarrow \frac{1}{2} \text{H}_2 (g) + \text{Cu}^+ .
\end{align*}

In base a tale scelta risulta, per qualunque temperatura:

\begin{align*}
(121, \ I) & \quad \Delta G_{\text{H}_2^+ , m=1}^{\text{aq}(\text{lp})} = 0.
\end{align*}

Questa scelta è connessa al fatto che il ΔG^0 di formazione degli ioni in soluzione acquosa si determinano mediante misure elettrochimiche. Ad es. il ΔG^0 di formazione dello ione Cl$^-$ può essere ottenuto da misure di differenza di potenziale tra un elettrodo a cloro e un elettrodo a idrogeno.

Agli elettrodi della cella avvengono rispettivamente le due seguenti mezze reazioni:

\begin{align*}
(122, \ I) & \quad \frac{1}{2} \text{Cl}_2 + e \rightarrow \text{Cl}^- , \\
(123, \ I) & \quad \frac{1}{2} \text{H}_2 \rightarrow \text{H}^+ + e ,
\end{align*}

(e = elettrone)

che complessivamente equivalgono alla (119, I).

In questo caso, poiché il ΔG^0 della reazione (119, I) è molto negativo (−31350 cal/g atomo a 25°C) la cella funziona da pila.

Il ΔG della (119, I) è:

\begin{align*}
(124, \ I) & \quad \Delta G = \Delta G_{\text{H}_2^+} + \Delta G_{\text{Cl}^-} - \frac{1}{2} \Delta G_{\text{Cl}_2} - \frac{1}{2} \Delta G_{\text{H}_2} ;
\end{align*}

questa relazione, tenuta presente la (121, I), si può scrivere:

\begin{align*}
(125, \ I) & \quad \left\{ \begin{array}{l}
\Delta G = \Delta G_{\text{H}_2^+ , m=1}^{\text{aq}(\text{lp})} + \Delta G_{\text{Cl}^- , m=1}^{\text{aq}(\text{lp})} + R \ T \ ln \ \frac{(a_{\text{H}^+}) \ (a_{\text{Cl}^-})}{(P_{\text{H}_2}^*)^{\frac{1}{2}} (P_{\text{Cl}_2}^*)^{\frac{1}{2}}} \\
\Delta G = \Delta G_{\text{Cl}_2 , m=1}^{\text{aq}(\text{lp})} + R \ T \ ln \ \frac{(a_{\text{H}^+}) \ (a_{\text{Cl}^-})}{(P_{\text{H}_2}^*)^{\frac{1}{2}} (P_{\text{Cl}_2}^*)^{\frac{1}{2}}} \\
\Delta G = \Delta G^0 + R \ T \ ln \ \frac{(a_{\text{H}^+}) \ (a_{\text{Cl}^-})}{(P_{\text{H}_2}^*)^{\frac{1}{2}} (P_{\text{Cl}_2}^*)^{\frac{1}{2}}} .
\end{array} \right.
\end{align*}

Per meglio comprendere il metodo di valutazione dei ΔG^0 con l’ausilio di misure elettrochimiche, è opportuno ricordare come può essere effettuata in una cella una misura di differenza di potenziale in condizioni di reversibilità.

Supponiamo di applicare agli elettrodi di una cella una f.e.m. uguale ed opposta a quella della cella. In condizioni di perfetto equilibrio, non vi è flusso di
corrente e nella cella non avviene nessun processo chimico. Se la f.e.m. esterna è aumentata di una quantità molto piccola, una piccola quantità di corrente passa nella cella e vi è una trasformazione chimica di piccola entità (proporzionale alla quantità di corrente) in un dato senso; modificando la f.e.m. esterna della stessa quantità, ma in senso opposto, si deve avere un flusso di corrente ed una trasformazione chimica nella cella, opposta a quelle verificatesi nel caso precedente.

Da questo esempio, si comprende come sia possibile misurare dei ΔG per via elettrochimica (ad esempio con l’ausilio di un potenziometro) praticamente in condizioni di reversibilità.

Ricordiamo ora che per un processo reversibile che avviene in un sistema il quale scambia lavoro utile con l’ambiente si ha: $\Delta G = -L_u$ (vedi l’ultima delle eq. (21, I)). Se il lavoro fatto dal sistema è di tipo elettrico, risulta per un processo reversibile:

(126, I)

$$L_u = n E F;$$

ove:

$L_u =$ lavoro elettrico (preso con il segno positivo se compiuto dal sistema);
$n =$ numero di cariche elettriche interessate al processo (per la reazione (119, I): $n = 1$);
$F =$ 96493,5 coulomb/g eq. (nei calcoli si assumerà $F = 96500$ coul.)
$E =$ differenza di potenziale misurata agli elettrodi. Il segno di E è quello di L_u.

Tenuto conto della (126, I) e dell’ultima delle (21, I) e sostituendo nell’ultima della (125, I), si ottiene:

(127, I)

$$E = -\frac{\Delta G^o}{n F} - \frac{R T}{n F} \ln \frac{(a_{H^+}) (a_{Cl^-})}{(P_{H_2})^\delta (P_{Cl_2})^\delta}$$

(128, I)

$$E = E^o - \frac{R T}{F} \ln \frac{(a_{H^+}) (a_{Cl^-})}{(P_{H_2})^\delta (P_{Cl_2})^\delta} =$$

$$= E^o - \frac{R T}{F} \ln \frac{(\gamma_{H^+}) (m_{H^+}) (\gamma_{Cl^-}) (m_{Cl^-})}{(\varphi_{H_2})^\delta (P_{H_2})^\delta (\varphi_{Cl_2})^\delta (P_{Cl_2})^\delta}$$

La tensione E^o:

(129, I)

$$E^o = -\frac{\Delta G^o}{n F}$$

ossia:

(130, I)

$$E^o \text{ (volt)} = -\frac{\Delta G^o \text{ (cal/g atomo)} \cdot (3600)}{n(96500) \cdot (860)}.$$
rappresenta la differenza di potenziale misurata agli elettrodi di una pila (o cella) reversibile nella quale ciascuna delle sostanze che compaiono nella (127, I) ha attività unitaria.

Per il caso qui considerato, si trova in letteratura [80]:

$$\Delta G^{0, aq(ip.)}_{\text{Cl}^-_{m=1}} = -31350 \text{ cal/g atomo (a 25 °C)};$$

e per la (119, I) $E^\circ = 1.36 \text{ volt}$; si può constatare che ΔG^0 e E° sono effettivamente legati tra loro dalla (129, I):

$$1.36 = \frac{(31350) \cdot (3600)}{1 \cdot (96500) \cdot (860)}.$$

Pertanto, noti i coefficienti di attività e degli altri termini che compaiono nella (128, I), la misura sperimentale di E consente la valutazione di E°. A pressione atmosferica: $\gamma_H \approx \gamma_{\text{Cl}} \approx 1$. A titolo esemplificativo preciseremo che per una soluzione 0,100 molale di HCl, il prodotto:

$$\gamma_\pm = (\gamma_{H^+})^\pm (\gamma_{\text{Cl}^-})^\pm = \frac{(a_{H^+})^\pm (a_{\text{Cl}^-})^\pm}{(m_{H^+})^\pm (m_{\text{Cl}^-})^\pm} = 0.796.$$

Si può ancora osservare che per $m \to 0$, i coefficienti di attività tendono ad uno (per definizione); in queste condizioni, la conoscenza di E e delle molalità, può consentire il calcolo diretto di E°.

Ripetiamo ora alcune osservazioni sul significato del ΔG^0_{MX} di formazione della specie non dissociata degli elettroliti forti (MX) in soluzione acquosa, tenuto conto del particolare stato di riferimento scelto per tali specie che ha dato luogo alla (71, I).

Per la reazione di dissociazione in acqua:

(131, I) \[MX \rightleftharpoons M^+ + X^-; \]

si avrà:

(132, I) \[K = \frac{(a_+)(a_-)}{a_2}; \]

la (71, I) equivale ad assumere per qualsiasi valore della temperatura: $K = 1$; ossia, tenuta presente la (100, I):

(133, I) \[\Delta G^{0, aq(ip.)}_{MX, m=1} = \Delta G^{0, aq(ip.)}_{M^+, m=1} + \Delta G^{0, aq(ip.)}_{X^-, m=1} \]

Tenute presenti le (107 e 108, I), per gli elettroliti forti si avrà anche:

(134, I) \[\Delta H^{aq}_{MX, m \to o} = \Delta H^{aq}_{M^+, m \to o} + \Delta H^{aq}_{X^-, m \to o}. \]
Per gli acidi forti, tenuta presente la (134, 1) e la (121, 1) si avrà ad es.

\[
\Delta G_{H_2X, m=1}^{o, \text{aq(ip.)}} = \Delta G_{X^-, m=1}^{o, \text{aq(ip.)}} \quad \text{e:} \quad \Delta H_{H_2X, m=0}^{\text{aq}} = \Delta H_{X^-, m=0}^{\text{aq}}
\]

Nei calcoli relativi a soluzioni acquisite di elettroliti forti, è quindi indifferente riferirsi ai \(\Delta G_{H_2X, m=1}^{o, \text{aq(ip.)}}\) o ai \(\Delta G_{X^-, m=1}^{o, \text{aq(ip.)}}\), piuttosto che ai \(\Delta G^o\) di formazione degli ioni corrispondenti.

La conoscenza di queste grandezze non consente ovviamente di valutare le costanti di dissociazione degli elettroliti forti. Tale calcolo è invece possibile per gli elettroliti deboli, data la scelta dello stato di riferimento fatta per l’elettrolito non dissociato. Ad esempio per HCOOH in soluzione acquosa si trova in letteratura [80]: \(\Delta G_{\text{HCOOH}, m=1}^{o, \text{aq(ip.)}} = -85,1 \text{ kcal/mole (a 25} \degree \text{C)}\)

\[
\Delta G_{\text{HCOO}^-, m=1}^{o, \text{aq(ip.)}} = -80,0 \text{ kcal/mole (a 25} \degree \text{C)}
\]

La costante di dissociazione dell’acido (espressa in funzione delle attività) è la costante dell’equilibrio \(\text{HCOOH} \rightleftharpoons \text{HCOO}^- + \text{H}^+\)

ossia:

\[-RT \ln K_{\text{HCOOH}} = \Delta G_{\text{HCOOH}, m=1}^{o, \text{aq(ip.)}} - \Delta G_{\text{HCOO}^-, m=1}^{o, \text{aq(ip.)}}\]

Si trova: \(K_{\text{HCOOH}(25} \degree \text{C)} = 1,76 \cdot 10^{-4}\) che è il valore riportato in letteratura [33].

È interessante ricordare il caso degli elettroliti aventi più di un grado di dissociazione; ad es. per l’acido solforico, dai dati riportati in letteratura [80], risulta:

\[
\Delta G_{\text{H}_2\text{SO}_4, m=1}^{o, \text{aq(ip.)}} = \Delta G_{\text{SO}_4^{2-}, m=1}^{o, \text{aq(ip.)}} = -177,34 \text{ kcal/mole (a 25} \degree \text{C)}
\]

\[
\Delta G_{\text{HSO}_4^-, m=1}^{o, \text{aq(ip.)}} = -179,94 \text{ kcal/mole (a 25} \degree \text{C)}
\]

Questi dati consentono di calcolare solamente la costante di dissociazione dell’equilibrio: \(\text{HSO}_4^- \rightleftharpoons \text{H}^+ + \text{SO}_4^{2-}\). Si ha:

\[-RT \ln K_{\text{HSO}_4^-} = \Delta G_{\text{SO}_4^{2-}, m=1}^{o, \text{aq(ip.)}} - \Delta G_{\text{HSO}_4^-, m=1}^{o, \text{aq(ip.)}}\]

Risulta:

\[K_{\text{HSO}_4^-} = 1,5 \cdot 10^{-2}\]

In letteratura [33] si trova \(K_{\text{C,HSO}_4^- (18} \degree \text{C)} = [\text{H}^+] [\text{HSO}_4^-] = 2 \cdot 10^{-2}\); questa costante (\(K_c\)) è espressa in funzione delle concentrazioni, mentre la precedente era espressa in funzione delle attività.

15. Tensioni standard di ossidazione - Serie elettrochimica. — Si è visto che l’equazione (125, I) può essere scritta anche se il \(\Delta G\) che compare in essa è il \(\Delta G^o\) di formazione di uno ione in soluzione acquosa. Questi \(\Delta G^o\) sono dei \(\Delta G^o\) di reazioni come la (119, I) o la (120, I) nelle quali figurano lo ione del quale si vuole determinare il \(\Delta G^o\) di formazione e, come altro ione, solamente lo ione
H⁺. Ciascuna di queste reazioni può essere scissa in due mezze reazioni (vedi eq. (122, I) e (123, I)) ciascuna corrispondente ad una mezza reazione che avviene ad un elettrodo. Il ΔG° della reazione globale considerata è quindi legato alla differenza di potenziale tra gli elettrodi di una pila reversibile costituita da un elettrodo a idrogeno (in un sistema per il quale P°_{H₂} = 1 atm. e a°_{H⁺} = 1) e da un elettrodo costituito dalla coppia elemento/ione per la quale si vuole effettuare la misura.

Ciò equivale a definire delle tensioni di scarica agli elettrodi. In effetti, facendo ancora riferimento alla reazione (119, I), si osserva che, ponendo \(E^o_{H⁺} = 0 \), risulta per la (122, I): \(E^o_{Cl⁻} = -\frac{\Delta G^o_{(119, I)}}{n F} \).

Generalmente, nel definire queste tensioni di scarica agli elettrodi, si fa riferimento ad una mezza reazione di ossidazione, ossia ad una reazione nella quale si libera un elettrone.

Si definiscono così le tensioni standard di ossidazione e si costruisce in tale modo la serie elettrochimica degli elementi (vedi tab. (1, I)).

Tabella (1, I) - Tensioni standard di ossidazione (a 25 °C). Serie elettrochimica degli elementi [33,52]

<table>
<thead>
<tr>
<th>Reazione</th>
<th>Tensione (volt)</th>
<th>Reazione</th>
<th>Tensione (volt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na → Na⁺ + e</td>
<td>+ 2,714</td>
<td>2 OH⁻ → H₂O + ½ O₂ + 2e</td>
<td>- 0,401</td>
</tr>
<tr>
<td>Mg → Mg⁺⁺ + 2e</td>
<td>+ 2,375</td>
<td>Cu → Cu⁺⁺ + 2e</td>
<td>- 0,337</td>
</tr>
<tr>
<td>Zn → Zn⁺⁺ + 2e</td>
<td>+ 0,763</td>
<td>Cu → Cu⁺ + e</td>
<td>- 0,521</td>
</tr>
<tr>
<td>½ H₂ → H⁺ + e</td>
<td>0,000</td>
<td>Cl⁻ → ½ Cl₂ + e</td>
<td>- 1,358</td>
</tr>
</tbody>
</table>

Per meglio mettere in evidenza le relazioni che intercorrono tra tensioni standard ed entalpie libere di reazione, si consideri la reazione di decomposizione elettrolitica dell’acqua:

(136, I) \[H₂O \rightarrow H₂ + ½ O₂. \]

Per questa reazione, risulta a 25 °C.

(137, I) \[E^o = \frac{(\Delta G^o_{H₂O}) \cdot (3600)}{2(96500) \cdot (860)} = -\frac{(56690) \cdot (3600)}{2(96500) \cdot (860)} = -1,23 \text{ volt}. \]

La (136, I) è equivalente alla somma delle seguenti:

(138, I) \[2 H₂O \rightarrow 2 OH⁻ + 2 H⁺ \]
(139, I) \[2 OH⁻ \rightarrow H₂O + ½ O₂ + 2e; \]
(140, I) \[2 H⁺ + 2e \rightarrow H₂. \]
Le mezze reazioni (139, I) e (140, I) rappresentano i processi di scarica del l’ossigeno e dell’idrogeno, che avvengono rispettivamente all’anodo e al catodo della cella.

Sommando la (139, I) alla (140, I), la (136, I) risulta equivalente alle seguenti reazioni:

(138, I) \[2 \text{H}_2\text{O} \rightarrow 2 \text{OH}^- + 2 \text{H}^+; \]
(141, I) \[2 \text{OH}^- + 2 \text{H}^+ \rightarrow \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 + \text{H}_2. \]

Ossia:
(142, I) \[\Delta G^0_{(136, I)} = \Delta G^0_{(138, I)} + \Delta G^0_{(141, I)}; \]

e, tenuto conto che il numero delle cariche che intervengono in ciascuna delle reazioni (138, I e 141, I) è lo stesso:

(143, I) \[E^0_{(136, I)} = E^0_{(138, I)} + E^0_{(139, I)} + E^0_{(140, I)}. \]

Per la (138, I) risulta:

(144, I) \[\Delta G^0_{(138, I)} = 2 \Delta G^0_{\text{OH}^-,m=1} - 2 \Delta G^0_{\text{H}_2\text{O}} = \]
\[= - 2 \cdot (37595) + 2 \cdot (56690) = 38190 \text{ cal} \]
ossia:
(145, I) \[E^0_{(138, I)} = \frac{(38190) \cdot (3600)}{2 \cdot (96500) \cdot (860)} = -0,83 \text{ volt.} \]

Analogamente si calcola:

(146, I) \[E^0_{(139, I)} = \frac{- (\Delta G^0_{(141, I)}) \cdot (3600)}{2 \cdot (860)} \]
\[E^0_{(139, I)} = \frac{[56690 - 2 (37595)] \cdot 3600}{2 \cdot (96500) \cdot (860)} = -0,40 \text{ volt.} \]

Questo valore è la tensione standard dell’elettrodo a ossigeno riportato nella serie elettrochimica degli elementi (tabella (1, I)). Poiché per definizione \(E^0_{(140, I)} = 0 \), si ha:

\[E^0_{(136, I)} = -0,83 - 0,40 = -1,23 \text{ volt}, \]

che è il valore sopra trovato (vedi equazione (137, I)).

La relazione tra potenziali standard e \(\Delta G^0 \), consente di comprendere immediatamente il significato termodinamico della serie elettrochimica degli elementi. Si consideri ad esempio la reazione:

(147, I) \[\text{Cu} + \text{H}_2\text{SO}_4 \text{(aq)} \rightarrow \text{CuSO}_4 \text{(aq)} + \text{H}_2. \]
Si dice comunemente che tale reazione non avviene data la posizione relativa di H\(^+\) e di Cu\(^{++}\) nella serie elettrochimica.

Per detta reazione si calcola (per T = 25 °C) [80]:

\[
\Delta G^o = \Delta G^o_{\text{CuSO}_4}^{\text{aq}(lp)}_{\text{m}=1} - \Delta G^o_{\text{H}_2\text{SO}_4}^{\text{aq}(lp)}_{\text{m}=1} = -161810 + 177340 = \\
= +15530 \text{ cal/mole}.
\]

Dalla serie elettrochimica, la tensione standard (a 25 °C) di ossidazione del rame a rame rameico, riferito all'elettrodo a idrogeno è:

\[
E^o = -0.337 \text{ volt}.
\]

poiché:

\[
\Delta G^o = -\frac{nE^o F}{3600},
\]

risulta:

\[
\Delta G^o = \frac{2 \times 0.337 \times (96500) \times (860)}{3600} = 15530 \text{ cal/mole}
\]

che è il valore sopra calcolato; il \(\Delta G^o\) essendo positivo, la reazione non è termodinamicamente favorita.

Ricorderemo che il solfato di rame si prepara industrialmente dalla reazione: \(\text{CuO} + \text{H}_2\text{SO}_4 \rightarrow \text{CuSO}_4 + \text{H}_2\text{O}\) che è termodinamicamente favorita.

16. **Influenza della temperatura su alcune grandezze termodinamiche.** — In molti casi, i valori di \(\Delta G^o\) e di altre grandezze termodinamiche sono riportati in letteratura solo per alcuni valori della temperatura.

Il calcolo di alcune di queste grandezze, per altri valori della temperatura, si effettua con l'ausilio delle seguenti note relazioni:

\[
\left(\frac{\partial (\Delta G^o/R T)}{\partial T}\right)_P = \left(\frac{\partial \ln K}{\partial T}\right)_P = \frac{\Delta H^o}{R T^2}
\]

(equazione di **VAN'T HOFF**);

\[
\left(\frac{\partial (\Delta H^o)}{\partial T}\right)_P = \sum_i v_i c_{P,i}
\]

(legge di **KIRCHHOFF**);

\[
\left(\frac{\partial (\Delta S^o)}{\partial T}\right)_P = \sum_i v_i \frac{c_{P,i}}{T}
\]

ove:

\(c_{P,i}\) = calore molare a pressione costante della sostanza \(i\).
È opportuno osservare che per intervalli di temperatura sufficientemente ristretti, ΔH° si può, in molti casi, ritenere praticamente costante al variare della temperatura; per cui, in tale caso, due valori di K (o di ΔG°) sono sufficienti per determinare il valore numerico di ΔH°.

Per ΔH° costante, integrando la (150, I) si ottiene:

\[
(154, \, I) \quad \ln \frac{K}{K_1} = \frac{\Delta H^\circ (T - T_1)}{R T T_1}
\]

ove T_1 e K_1 sono noti.

In queste condizioni (ΔH° = costante), $\ln K$ è funzione lineare dell’inverso della temperatura espressa in gradi assoluti.
CAPITOLO II

PREVISIONE DI GRANDEZZE FISICHE
E TERMODINAMICHE DI GAS IDEALI, DI LIQUIDI PURI,
DI SOLIDI E DI ELETTROLITI

1. Premessa. — La conoscenza delle entalpie libere di formazione, delle
entalpie e dei calori molarì degli individui chimici, è indispensabile per lo studio
quantitativo degli equilibri chimici o degli effetti termici ed energetici che accom-
pagnano le reazioni. Inoltre, la conoscenza dei calori molarì in funzione della
temperatura (ed eventualmente dei calori latenti) consente di calcolare le en-
talpie, le entalpie libere e le entropie a diverse temperature, noti i corrispondenti
valori ad una temperatura generica (vedi equazioni (151-153, I)).

Prima di mostrare con alcuni esempi l’utilità in Chimica Industriale di tali
grandezze, riporteremo alcuni metodi di calcolo ed alcuni dati per la loro valuta-
zione.

In questo capitolo verrà in particolare considerato il caso di individui chi-
mici gassosi allo stato puro in condizioni di riferimento e di sostanze allo stato
condensato.

La valutazione delle grandezze termodinamiche per condizioni diverse
da quelle di riferimento e per sistemi a più componenti è trattata nel capi-
tolo IV.

Nella letteratura tecnica citata nella bibliografia, si trovano valori molto
precisi di ΔG°, ΔH°, ΔS°, c_p, ecc., per numerosi individui chimici, a seconda dei
casi, allo stato gassoso, liquido, cristallino o in soluzione (ad es. acquosa) a diverse
temperature [50, 41]. Ad es. Rossini e coll. [81] riportano ΔG° e ΔH° di forma-
zione, c_p, ecc. di idrocarburi e di altri composti organici, anche fino a 1500 °K e
fino a 5000 °K per alcuni gas semplici; in un’altra pubblicazione, Rossini e coll.
[80] riportano dati termodinamici per sostanze inorganiche e ioni in soluzione
acquosa. Per molti composti tuttavia, i dati a disposizione non sono sufficienti
ed è necessario utilizzare dei metodi di calcolo approssimati.
Questi metodi, che sono applicabili ai composti organici, hanno spesso carattere semi-empirico. Essi si basano sul fatto che, nota la composizione e la struttura del composto considerato, è possibile valutarne talune grandezze fisiche e termodinamiche utilizzando dati numerici ottenuti da misure effettuate su un numero limitato di altre sostanze.

Un'ottima rassegna critica dei diversi metodi di calcolo per la valutazione di grandezze termodinamiche dei composti organici, con metodi più o meno generali, è riportata da Reid e Sherwood [77].

2. Calcolo delle entalpie libere standard di formazione (ΔG°) di sostanze organiche, allo stato gassoso, con il metodo dei contributi di gruppo. — Tra i diversi metodi di carattere generale proposti per calcolare le entalpie libere di formazione, ricorderemo quello dei «contributi di gruppo» di Van Krevelen e Chermin [101, 102], direttamente applicabile a numerose sostanze organiche allo stato gassoso.

Secondo Van Krevelen e Chermin è possibile assegnare ad un dato gruppo (ad es. $-\text{CH}_3$, $-\text{CH}_2$, $-\text{OH}$, $-\text{COOH}$, $-\text{Cl}$, ecc.) contenuto in un qualsiasi composto organico nel proprio stato gassoso di riferimento (per il quale $P^\circ = P = 1 \text{ atm}$), un contributo di entalpia libera di formazione a partire dagli elementi, indipendente, in prima approssimazione, dal tipo di composto considerato.

Di conseguenza, l'entalpia libera di formazione di un dato composto organico allo stato gassoso, può essere calcolata, con buona approssimazione, come sommatoria dei contributi di ogni gruppo che lo costituisce.

In pratica, per avere dati più precisi, si introducono anche alcuni termini correttivi, per cui il valore di ΔG° di formazione (espresso in kcal/mole) ad una data temperatura, di un dato composto supposto nello stato gassoso di riferimento sopra considerato, si calcola con la relazione:

$$(1, II) \Delta G^\circ = \Sigma \Delta G^\circ \text{ dei gruppi} + \text{eventuali termini correttivi} + RT \cdot 10^{-3} \ln \sigma.$$

I termini correttivi sono introdotti per tener conto ad es. della natura, della quantità e della posizione di ramificazioni, della eventuale presenza di anelli (come nelle cicloparaffine o nelle cicloolefine) nella molecola considerata. Questi termini, per i diversi casi che si possono presentare, sono riportati più avanti (vedi tabelle (11-16, II)). $RT \cdot 10^{-3} \ln \sigma$ è un termine introdotto per tener conto della simmetria spaziale della molecola del composto considerato. σ è il fattore di simmetria della molecola ed è uguale al numero di conformazioni spaziali tra loro indistinguibili che può assumere la molecola mediante semplici rotazioni rigide attorno ai propri assi di simmetria.

A titolo esemplificativo, osserveremo che per il butadiene ($\text{CH}_2=\text{CHCH}=\text{CH}_2$)
σ è uguale a 2; per il benzene e per il tetrametilmetano (C(CH₃)₄), σ = 12; in effetti, quest'ultimo composto ha configurazione tetraedrica regolare.

![Diagram](image)

Si immagini l’asse di simmetria che congiunge l’atomo di carbonio (1) con l’atomo di carbonio centrale; la molecola può essere ricoperta tre volte con se stessa mediante rotazioni di 120° attorno a questo asse; poiché la molecola ha quattro assi di simmetria, simili all’asse precedente, risulta: σ = 4 · 3 = 12.

Per i composti non aventi assi di simmetria come per es.:

\[
\begin{align*}
\text{CH}_3 \\
\text{CH}_2 - \text{OH}
\end{align*}
\]

σ è evidentemente uguale a 1.

Per i Δ\(G^\circ\) di ciascuno dei gruppi che compaiono nella (1, II), Van Krevelen e Chermin pongono:

\[
(2, \text{II}) \quad \Delta G^\circ = A + \frac{B \cdot T}{100},
\]

ove A e B sono ritenuti costanti per un certo intervallo di temperatura; T è espresso in °K.

Il confronto dell’espressione (2, II) con la nota relazione:

\[
(3, \text{II}) \quad \Delta G^\circ = \Delta H^\circ - T \cdot \Delta S^\circ,
\]

consente di precisare il significato di A e di B: A equivale ad una entalpia di formazione e \(-B/100\) ad un’entropia di formazione. Si deve tuttavia osservare che A e \(-B/100\) danno, il più delle volte, una idea solo grossolanamente approssimata dei rispettivi valori corretti di \(\Delta H^\circ\) e \(\Delta S^\circ\), poiché con il metodo qui considerato, l’espressione di \(\Delta G^\circ\) in funzione della temperatura è approssimata ad una retta per un intervallo di temperatura relativamente ampio.

Questi dati consentono di valutare l'entalpia libera di formazione a T e P costanti di numerosi composti organicici, a partire dagli elementi (C: grafite, H$_2$: gas, O$_2$: gas, Cl$_2$: gas, ecc.) anche fino a temperature di 1500 °K.

L'errore che si commette applicando questo metodo di calcolo è contenuto entro $\pm 0,6$ kcal/mole per molti composti (soprattutto per gli idrocarburi; ad esempio per $T = 600$ °K e $P = 1$ atm, si calcola, per il 3-metilesano $+ 52,2$ kcal/mole invece di $+ 52,01$ kcal/mole, per lo stirene $69,17$ kcal/mole invece di $68,67$ kcal/mole, per il trans-butene-2: $34,33$ kcal/mole invece di $34,83$ per l'acetone $- 17,3$ kcal/mole invece di $- 16,6$ kcal/mole). In taluni casi tuttavia, l'errore può essere notevolmente più elevato: ad es. per $T = 298$ °K e $P = 1$ atm, si calcola, per il tetrachloruro di carbonio: $- 17,62$ kcal/mole, invece di $- 15,35$ kcal/mole, per il cloruro di metilene: $- 16,67$ kcal/mole, invece di $- 25,16$ kcal/mole; per altri valori della temperatura, l'errore, per questi stessi composti, può essere però inferiore.

Per i primi termini di alcune serie organiche (ad es. C$_4$H$_4$, C$_2$H$_6$, CH$_3$OH ecc.) il calcolo con il metodo dei contributi di gruppo darebbe luogo ad errori troppo rilevanti. Per tali composti, i valori di A e di B vengono direttamente indicati nelle tabelle.

Chermin [11 bis] ha riportato altri dati che consentono una valutazione assai precisa dei ΔG° di formazione e di altre funzioni termodinamiche, di alcune serie di composti organici.

Tabella (1, II) - Contributo di gruppi per il calcolo di ΔG°. Gruppi satti (da Chermin [11])

<table>
<thead>
<tr>
<th>Gruppo o composto</th>
<th>300 \div 600 °K</th>
<th>600 \div 1500 °K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>$- 18,719$</td>
<td>$2,180$</td>
</tr>
<tr>
<td>$-$CH$_3$</td>
<td>$- 10,833$</td>
<td>$2,176$</td>
</tr>
<tr>
<td>$-$CH$_2$-</td>
<td>$- 5,283$</td>
<td>$2,443$</td>
</tr>
<tr>
<td>$-$CH</td>
<td>$- 0,756$</td>
<td>$2,942$</td>
</tr>
<tr>
<td>$-$O</td>
<td>$+ 3,060$</td>
<td>$3,636$</td>
</tr>
</tbody>
</table>
Tabella (2, II) - Contributo di gruppi per il calcolo di ΔG°: Gruppi con doppi legami olefinici e allenici (da Chermin [11]).

<table>
<thead>
<tr>
<th>Gruppo o composto</th>
<th>$300 \div 600 , ^\circ K$</th>
<th>$600 \div 1500 , ^\circ K$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>$\text{H}_2\text{C}=$CH$_2$</td>
<td>+ 11,653</td>
<td>1,552</td>
</tr>
<tr>
<td>$\text{H}_2\text{C}=$CH & H</td>
<td>14,281</td>
<td>1,642</td>
</tr>
<tr>
<td>$\text{H}_2\text{C}=$C & H</td>
<td>16,823</td>
<td>1,864</td>
</tr>
<tr>
<td>H & C=C & H</td>
<td>18,407</td>
<td>1,834</td>
</tr>
<tr>
<td>H & C=C & H</td>
<td>17,019</td>
<td>2,007</td>
</tr>
<tr>
<td>$\text{C}=$C & H</td>
<td>20,273</td>
<td>2,306</td>
</tr>
<tr>
<td>$\text{C}=$C & H</td>
<td>23,955</td>
<td>2,839</td>
</tr>
<tr>
<td>$\text{H}_2\text{C}=$C=CH$_2$</td>
<td>45,293</td>
<td>1,010</td>
</tr>
<tr>
<td>$\text{H}_2\text{C}=$C=C & H</td>
<td>48,871</td>
<td>1,063</td>
</tr>
<tr>
<td>$\text{H}_2\text{C}=$C=C & H</td>
<td>51,159</td>
<td>1,481</td>
</tr>
<tr>
<td>H & C=C & C</td>
<td>53,156</td>
<td>1,528</td>
</tr>
</tbody>
</table>

Il calcolo dei ΔG° di formazione delle cicloparaffine e delle cicloolefine si effettua con i termini relativi ai gruppi $-\text{CH}_2-$ e rispettivamente $-\text{CH}=\text{CH}-$ ecc., utilizzati per le paraffine e per le olefine; il calcolo si completa introducendo una correzione per la presenza di anelli.

I ΔG° di formazione dei composti aromatici e delle diolefine coniugate, devono essere calcolati con contributi diversi da quelli dei gruppi $-\text{CH}=\text{CH}-$, $-\text{CH}=\text{C}-$ ecc., relativi alle olefine. In effetti, a causa dei fenomeni di coniugazione, la configurazione elettronica e le dimensioni geometriche dei gruppi in-
Tabella (3, II) - Contributo di gruppi per il calcolo di ΔG°: Gruppi con doppi legami coniugati (da Chermin [11]).

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>$300 \div 600 , ^\circ K$</th>
<th>$600 \div 1500 , ^\circ K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_2C\leftrightarrow$</td>
<td>9,634 1,088</td>
<td>8,980 1,197</td>
</tr>
<tr>
<td>$H\leftrightarrow C\leftrightarrow$</td>
<td>3,100 0,610</td>
<td>2,536 0,704</td>
</tr>
<tr>
<td>$H-C\leftrightarrow$</td>
<td>12,302 1,438</td>
<td>12,408 1,420</td>
</tr>
<tr>
<td>$\perp C\leftrightarrow$</td>
<td>5,280 0,994</td>
<td>5,634 0,935</td>
</tr>
</tbody>
</table>

Tabella (4, II) - Contributo di gruppi per il calcolo di ΔG°: Gruppi con tripli legami (da Chermin [11]).

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>$300 \div 600 , ^\circ K$</th>
<th>$600 \div 1500 , ^\circ K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$HC=\equiv$</td>
<td>27,104 $-$ 0,775</td>
<td>26,678 $-$ 0,704</td>
</tr>
<tr>
<td>$-C=\equiv$</td>
<td>27,478 $-$ 0,617</td>
<td>27,346 $-$ 0,595</td>
</tr>
</tbody>
</table>

saturi delle diolefine coniugate e dei composti aromatici, sono diverse da quelle corrispondenti ai doppi legami non coniugati. Nelle tabelle, i gruppi coniugati sono indicati con: $H_2C\leftrightarrow$, $\leftrightarrow C\leftrightarrow$, $-C\leftrightarrow$ ecc..

I dati della tab. (5, II) relativi ai composti aromatici, tengono già conto della presenza dell’anello benzenico; pertanto, per questi composti, i termini correttivi riguardano solo l’eventuale presenza di ramificazioni e la simmetria.

Dalle tab. (14 e 15, II) si può rilevare il basso valore dei termini correttivi relativi alle ramificazioni, per tutti i composti. Non è proposta per esempio nessuna correzione per gli idrocarburi (aciclici) aventi ramificazioni $-CH_3$ non adiacenti. Va tuttavia tenuto presente che nella formazione di due isomeri, non in-
Tabella (5, II) - Contributo di gruppi per il calcolo di \(\Delta G^0 \): Gruppi in composti aromatici (da Chemin [11]).

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>(300 \div 600 , ^\circ K)</th>
<th>600 \div 1500 , ^\circ K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>(\text{HC})</td>
<td>3,100</td>
<td>0,610</td>
</tr>
<tr>
<td>(\text{C}^+)</td>
<td>5,280</td>
<td>0,994</td>
</tr>
<tr>
<td>(\text{C}^-)</td>
<td>2,260</td>
<td>0,553</td>
</tr>
</tbody>
</table>

Tendono sempre gli stessi gruppi; di conseguenza, l'entalpia libera di formazione di un dato composto risulterà generalmente diversa da quella di un suo isomero qualsiasi. Per es. per l'alcool \(n\)-butilico (\(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}\)) e per l'alcool isobutilico (\(\text{CH}_3\)\(_2\text{CHCH}_2\text{OH}\)), si avrà rispettivamente:

\[
\begin{align*}
\Delta G^0_{n-C_4} &= \Delta G^0_{-CH_3} + 3 \Delta G^0_{-CH_2} + \Delta G^0_{-OH}, \\
\Delta G^0_{i-C_4} &= 2 \Delta G^0_{-CH_3} + \Delta G^0_{-CH_2} + \Delta G^0_{-CH_1} + \Delta G^0_{-OH}.
\end{align*}
\]

Sottraendo la seconda espressione dalla prima si ottiene:

\[
\Delta G^0_{n-C_4} - \Delta G^0_{i-C_4} = -2 \Delta G^0_{-CH_3} + 2 \Delta G^0_{-CH_2} - \Delta G^0_{-CH_1}.
\]

Questo esempio mette d'altra parte in evidenza l'inapplicabilità del metodo in esame allo studio di equilibri interessati da variazioni di entalpia libera molto piccole.

Generalizzando l'esempio precedente, si considerino i due seguenti isomeri:

\[\text{CH}_3(\text{CH}_2)_\alpha X \quad \text{e} \quad \text{CH}_3(\text{CH}_2)_\beta \text{CH}(\text{CH}_3)(\text{CH}_2)_\gamma X;\]

\(\text{I}\)

\(\text{II}\)

ove:

\(X = \text{gruppo qualsiasi} (-\text{CH}_3, -\text{OH}, -\text{COOH}, -\text{Cl ecc.});\)

\(\alpha = \beta + \gamma + 2.\)
<table>
<thead>
<tr>
<th>Gruppo o composto</th>
<th>$300 \div 600^\circ\text{K}$</th>
<th>$600 \div 1500^\circ\text{K}$</th>
<th>$T_{\text{max}}^\circ\text{K}$(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>H_2O</td>
<td>-58,076</td>
<td>1,154</td>
<td>-59,138</td>
</tr>
<tr>
<td>$-\text{OH}$</td>
<td>-41,56</td>
<td>1,28</td>
<td>-41,56</td>
</tr>
<tr>
<td>$-\text{O}$</td>
<td>-15,79</td>
<td>0,85</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-18,37</td>
<td>0,80</td>
<td>-16,07</td>
</tr>
<tr>
<td>H_2CO</td>
<td>-29,118</td>
<td>0,653</td>
<td>-30,327</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}=\text{O}$</td>
<td>-29,28</td>
<td>0,77</td>
<td>-30,15</td>
</tr>
<tr>
<td>$\text{C}=\text{O}$</td>
<td>-28,08</td>
<td>0,91</td>
<td>-28,08</td>
</tr>
<tr>
<td>HCO</td>
<td>-87,000</td>
<td>2,473</td>
<td>-90,569</td>
</tr>
<tr>
<td>OH</td>
<td>-98,39</td>
<td>2,86</td>
<td>-98,83</td>
</tr>
<tr>
<td>$\text{C}=\text{O}$</td>
<td>-92,62</td>
<td>2,61</td>
<td>-92,62</td>
</tr>
<tr>
<td>$\text{H}_4\text{C}=\text{C}=\text{O}$</td>
<td>-14,515</td>
<td>0,295</td>
<td>-14,515</td>
</tr>
<tr>
<td>$\text{HC}=\text{C}=\text{O}$</td>
<td>-12,86</td>
<td>0,46</td>
<td>-12,86</td>
</tr>
<tr>
<td>$\text{C}=\text{C}=\text{O}$</td>
<td>-9,62</td>
<td>0,72</td>
<td>-9,38</td>
</tr>
</tbody>
</table>

(*) Temperatura massima per la quale i dati sono stati paragonati con i valori riportati in letteratura.
Tabella (7, II) - Contributo di gruppi per il calcolo di ΔG°: Gruppi contenenti azoto (da VAN KREVELEN e CHERMIN [101]).

<table>
<thead>
<tr>
<th>Gruppo o composto</th>
<th>$300 \div 600 , ^\circ$K</th>
<th>$600 \div 1500 , ^\circ$K</th>
<th>$T_{\text{max}} , ^\circ$K(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>HCN</td>
<td>31,179</td>
<td>0,826</td>
<td>30,874</td>
</tr>
<tr>
<td>$-\text{C}=\text{N}$</td>
<td>30,75</td>
<td>0,72</td>
<td>30,75</td>
</tr>
<tr>
<td>$-\text{N}=\text{C}$</td>
<td>46,32</td>
<td>0,89</td>
<td>46,32</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>-11,606</td>
<td>2,556</td>
<td>-12,972</td>
</tr>
<tr>
<td>$-\text{NH}_2$</td>
<td>2,82</td>
<td>2,71</td>
<td>-6,78</td>
</tr>
<tr>
<td>/NH</td>
<td>12,93</td>
<td>3,16</td>
<td>12,93</td>
</tr>
<tr>
<td>/N</td>
<td>19,46</td>
<td>3,82</td>
<td>19,46</td>
</tr>
<tr>
<td>N</td>
<td>11,32</td>
<td>1,11</td>
<td>12,26</td>
</tr>
<tr>
<td>$-\text{NO}_2$</td>
<td>-9,0</td>
<td>3,70</td>
<td>-14,19</td>
</tr>
</tbody>
</table>

Tabella (8, II) - Contributo di gruppi per il calcolo di ΔG°: Gruppi contenenti zolfo(*) (da VAN KREVELEN e CHERMIN [101], [102]).

<table>
<thead>
<tr>
<th>Gruppo o composto</th>
<th>$300 \div 600 , ^\circ$K</th>
<th>$600 \div 1500 , ^\circ$K</th>
<th>$T_{\text{max}} , ^\circ$K(**)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>-20,552</td>
<td>1,026</td>
<td>-21,366</td>
</tr>
<tr>
<td>$-\text{SH}$</td>
<td>-10,68</td>
<td>1,07</td>
<td>-10,68</td>
</tr>
<tr>
<td>$-\text{S}$</td>
<td>-3,32</td>
<td>1,42</td>
<td>-3,32</td>
</tr>
<tr>
<td>S</td>
<td>-0,97</td>
<td>0,51</td>
<td>-0,65</td>
</tr>
<tr>
<td>/SO</td>
<td>-30,19</td>
<td>3,39</td>
<td>-30,19</td>
</tr>
<tr>
<td>/SO$_2$</td>
<td>-82,58</td>
<td>5,58</td>
<td>-80,69</td>
</tr>
</tbody>
</table>

(*) I dati riportati sono riferiti allo zolfo allo stato gassoso.
(**) Temperatura massima per la quale i dati sono stati paragonati con i valori riportati in letteratura.
Tabella (9, II) - Contributo di gruppi per il calcolo di ΔG°: Gruppi contenenti alogenii (*) (da Van Krevelen e Chermin [101], [102]).

\[
\text{Contributo di gruppo } A + \frac{BT}{100} \text{ (kcal/mol)}
\]

<table>
<thead>
<tr>
<th>Gruppo o composto</th>
<th>(300 \div 600 , ^\circ\text{K})</th>
<th>(600 \div T_{\text{max}})</th>
<th>(T_{\text{max}} , ^\circ\text{K}(**))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>HF</td>
<td>64,476</td>
<td>0,145</td>
<td>64,884</td>
</tr>
<tr>
<td>-F</td>
<td>45,10</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>22,100</td>
<td>0,215</td>
<td>22,460</td>
</tr>
<tr>
<td>-Cl</td>
<td>8,25</td>
<td>0</td>
<td>8,25</td>
</tr>
<tr>
<td>HBr</td>
<td>12,553</td>
<td>0,234</td>
<td>13,010</td>
</tr>
<tr>
<td>-Br</td>
<td>1,62</td>
<td>0,26</td>
<td>1,62</td>
</tr>
<tr>
<td>HI</td>
<td>1,330</td>
<td>0,225</td>
<td>1,718</td>
</tr>
<tr>
<td>-I</td>
<td>7,80</td>
<td>0</td>
<td>7,80</td>
</tr>
</tbody>
</table>

(*) I dati riportati sono riferiti agli alogenii ed ai composti allo stato gassoso.

(**) Temperatura massima per la quale i dati sono stati paragonati con i valori riportati in letteratura.

Tabella (10, II) - Entalpia libera di formazione \(\Delta G^\circ = A + \frac{BT}{100}\) di alcuni composti semplici (da Van Krevelen e Chermin [101], [102]).

\[
\text{Entalpia libera di formazione (kcal/mole)}
\]

<table>
<thead>
<tr>
<th>Composto</th>
<th>(300 \div 600 , ^\circ\text{K})</th>
<th>(600 \div T_{\text{max}})</th>
<th>(T_{\text{max}} , ^\circ\text{K}(*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_4)</td>
<td>21,539</td>
<td>4,583</td>
<td>24,588</td>
</tr>
<tr>
<td>CO</td>
<td>26,582</td>
<td>2,122</td>
<td>26,582</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>94,076</td>
<td>0,061</td>
<td>94,234</td>
</tr>
<tr>
<td>(\text{CH}_2\text{OH})</td>
<td>49,440</td>
<td>3,480</td>
<td>51,330</td>
</tr>
<tr>
<td>(\text{COCl}_2)</td>
<td>52,01</td>
<td>0,94</td>
<td>52,01</td>
</tr>
<tr>
<td>(\text{CNCI})</td>
<td>34,151</td>
<td>0,430</td>
<td>34,151</td>
</tr>
<tr>
<td>((\text{CN})_2)</td>
<td>71,889</td>
<td>1,059</td>
<td>71,889</td>
</tr>
<tr>
<td>(\text{SO}_2) (***)</td>
<td>86,657</td>
<td>1,735</td>
<td>86,657</td>
</tr>
<tr>
<td>(\text{SO}_3) (***)</td>
<td>109,813</td>
<td>3,943</td>
<td>109,813</td>
</tr>
<tr>
<td>NO</td>
<td>21,543</td>
<td>0,301</td>
<td>21,543</td>
</tr>
<tr>
<td>(\text{NO}_2)</td>
<td>7,933</td>
<td>1,486</td>
<td>7,933</td>
</tr>
<tr>
<td>(\text{N}_2\text{O}_4)</td>
<td>7,112</td>
<td>5,460</td>
<td></td>
</tr>
<tr>
<td>(\text{COS}) (***)</td>
<td>49,414</td>
<td>0,245</td>
<td>49,269</td>
</tr>
<tr>
<td>(\text{CS}_2) (***)</td>
<td>3,310</td>
<td>0,150</td>
<td>3,104</td>
</tr>
</tbody>
</table>

(*) Temperatura massima per la quale i dati sono stati paragonati con i valori riportati in letteratura.

(**) Rispetto allo zolfo allo stato gassoso.
Tabella (11, II) - Termini correttivi per il calcolo dei ΔG° di formazione delle cicloparaffine (da Chermin [11]).

<table>
<thead>
<tr>
<th>Correzione $A + \frac{BT}{100}$ (kcal/mole)</th>
<th>300 \div 600 °K</th>
<th>600 \div 1500 °K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>anello a 3</td>
<td>27,215</td>
<td>-3,147</td>
</tr>
<tr>
<td>anello a 4</td>
<td>25,689</td>
<td>-2,910</td>
</tr>
<tr>
<td>anello a 5</td>
<td>5,511</td>
<td>-2,583</td>
</tr>
<tr>
<td>anello a 6</td>
<td>-0,707</td>
<td>-1,623</td>
</tr>
</tbody>
</table>

Tabella (12, II) - Termini correttivi per il calcolo dei ΔG° di formazione delle cicloolefine (da Chermin [11]).

<table>
<thead>
<tr>
<th>Correzioni $A + \frac{BT}{100}$ (kcal/mole)</th>
<th>300 \div 600 °K</th>
<th>600 \div 1500 °K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>anello pentenico</td>
<td>-3,455</td>
<td>-2,448</td>
</tr>
<tr>
<td>anello esenico</td>
<td>-1,043</td>
<td>-2,070</td>
</tr>
</tbody>
</table>

Tabella (13, II) - Termini correttivi per il calcolo dei ΔG° di formazione di composti eterociclici (da Van Krevelen e Chermin [101]).

<table>
<thead>
<tr>
<th>Correzione $A + \frac{BT}{100}$ (kcal/mole)</th>
<th>300 \div 600 °K</th>
<th>600 \div 1500 °K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>12,86</td>
<td>-0,63</td>
</tr>
<tr>
<td></td>
<td>-5,82</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabella (14, II) - Termini correttivi per il calcolo dei ΔG° di formazione degli idrocarburi non ciclici ramificati (Chemin [11]).

<table>
<thead>
<tr>
<th>Correzione $A + \frac{BT}{100}$ (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 \div 600 °K</td>
</tr>
<tr>
<td>600 \div 1500 °K</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>3 gruppi -CH adiacenti</td>
</tr>
<tr>
<td>gruppi -CH e -C- adiacenti</td>
</tr>
<tr>
<td>2 gruppi -C- adiacenti</td>
</tr>
</tbody>
</table>

Tabella (15, II) - Termini correttivi per il calcolo dei ΔG° di formazione delle cicloparaffine sostituite (da Chemin [11]).

<table>
<thead>
<tr>
<th>Correzione $A + \frac{BT}{100}$ (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di ramificazione</td>
</tr>
<tr>
<td>300 \div 600 °K</td>
</tr>
<tr>
<td>600 \div 1500 °K</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Ramificazione in anelli a 5 atomi</td>
</tr>
<tr>
<td>ramificazione semplice</td>
</tr>
<tr>
<td>ramificazione doppia</td>
</tr>
<tr>
<td>posizione 1,1</td>
</tr>
<tr>
<td>posizione 1,2 cis</td>
</tr>
<tr>
<td>posizione 1,2 trans</td>
</tr>
<tr>
<td>posizione 1,3 cis</td>
</tr>
<tr>
<td>posizione 1,3 trans</td>
</tr>
<tr>
<td>Ramificazione in anelli a 6 atomi</td>
</tr>
<tr>
<td>ramificazione semplice</td>
</tr>
<tr>
<td>ramificazione doppia</td>
</tr>
<tr>
<td>posizione 1,1</td>
</tr>
<tr>
<td>posizione 1,2 cis</td>
</tr>
<tr>
<td>posizione 1,2 trans</td>
</tr>
<tr>
<td>posizione 1,3 cis</td>
</tr>
<tr>
<td>posizione 1,3 trans</td>
</tr>
<tr>
<td>posizione 1,4 cis</td>
</tr>
<tr>
<td>posizione 1,4 trans</td>
</tr>
</tbody>
</table>
Tabella (16, II) - Termini correttivi per il calcolo dei ΔG° di formazione degli idrocarburi aromatici sostituiti (da Chermin [11]).

<table>
<thead>
<tr>
<th>Posizione dei sostituenti</th>
<th>$300 \div 600^\circ$K</th>
<th>$600 \div 1500^\circ$K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

2 sostituenti in:

- posizione 1,2
 - $0,955 + 0,055$
 - $1,687 - 0,067$
- posizione 1,3
 - $0,352 - 0,057$
 - $0,574 - 0,094$
- posizione 1,4
 - $- 0,183 + 0,105$
 - $0,615 - 0,025$

3 sostituenti in:

- posizione 1,2,3
 - $1,453 - 0,112$
 - $1,039 - 0,043$
- posizione 1,2,4
 - $0,297 - 0,070$
 - $0,243 - 0,061$
- posizione 1,3,5
 - $- 0,320 - 0,137$
 - $- 0,436 - 0,116$

4 sostituenti in:

- posizione 1,2,3,4
 - $3,664 - 0,007$
 - $4,456 - 0,139$
- posizione 1,2,3,5
 - $2,861 + 0,025$
 - $3,359 - 0,058$
- posizione 1,2,4,5
 - $2,736 - 0,150$
 - $3,072 - 0,206$

5 sostituenti

- $4,400 + 0,091$
 - $5,468 - 0,087$

6 sostituenti

- $8,254 + 0,260$
 - $10,006 - 0,032$

La differenza tra le entalpie libere di questi isomeri, calcolabile con il metodo dei contributi di gruppo, è uguale a:

\[
\Delta G^\circ_{1} - \Delta G^\circ_{II} = - \Delta G^\circ_{CH_x} + 2 \Delta G^\circ_{CH_y} - \Delta G^\circ_{CH_z},
\]

ossia è indipendente da X e dai valori numerici di α, β e γ; in pratica questa relazione è verificata solo approssimativamente.

3. Calcolo delle entalpie libere di formazione (ΔG°) per composti organici allo stato condensato. — Nota la tensione di vapore di un composto allo stato liquido o solido, è possibile calcolare il suo ΔG° di formazione allo stato
condensato alla temperatura considerata, con l’ausilio del metodo dei contributi di gruppo.

Si consideri ad es. la reazione di formazione dell’alcool n-propilico dagli elementi:

\[(8, \Pi) \quad 3 \text{C} + 4 \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{n-C}_3\text{H}_7\text{OH}(l)\]

ove:

\(\text{n-C}_3\text{H}_7\text{OH}(l)\) è l’alcool n-propilico allo stato liquido. Il \(\Delta G^o\) della reazione (8, \(\Pi\)) è:

\[(9, \Pi) \quad \Delta G^o_{\text{n-C}_3\text{H}_7\text{OH}} = \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - 3 \mu^o_{\text{C}} - 4 \mu^o_{\text{H}_2} - \frac{1}{2} \mu^o_{\text{O}_2}\]

ove gli indici superiori \(l, c\) e \(g\) indicano rispettivamente le sostanze allo stato liquido, solido e gassoso. Sottraendo e sommando \(\mu^o_{\text{n-C}_3\text{H}_7\text{OH}}\) alla (9, \(\Pi\)) si ottiene:

\[(10, \Pi) \quad \Delta G^o_{\text{n-C}_3\text{H}_7\text{OH}} = \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} + \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - 3 \mu^o_{\text{C}} - 4 \mu^o_{\text{H}_2} - \frac{1}{2} \mu^o_{\text{O}_2}\]

Ma l’espressione:

\[(11, \Pi) \quad \Delta G^o_{\text{n-C}_3\text{H}_7\text{OH}} = \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - 3 \mu^o_{\text{C}} - 4 \mu^o_{\text{H}_2} - \frac{1}{2} \mu^o_{\text{O}_2}\]

rappresenta il \(\Delta G^o\) di formazione dell’alcool n-propilico nello stato gassoso di riferimento, calcolabile con il metodo dei contributi di gruppo.

Si ha quindi:

\[(12, \Pi) \quad \Delta G^o_{\text{n-C}_3\text{H}_7\text{OH}} = \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} + \Delta G^o_{\text{n-C}_3\text{H}_7\text{OH}}\]

La differenza \(\mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - \mu^o_{\text{n-C}_3\text{H}_7\text{OH}}\) è il \(\Delta G^o\) di condensazione dell’alcool:

\[(13, \Pi) \quad \text{n-C}_3\text{H}_7\text{OH}(g) \rightarrow \text{n-C}_3\text{H}_7\text{OH}(l)\]

Per questa condensazione si può scrivere:

\[(14, \Pi) \quad \Delta G = \mu^l_{\text{n-C}_3\text{H}_7\text{OH}} - \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} - RT \ln P^*_{\text{n-C}_3\text{H}_7\text{OH}}\]

all’equilibrio liquido-vapore: \(\Delta G = 0\) e risulta: \(P_{\text{s,n-C}_3\text{H}_7\text{OH}} = P_{\text{n-C}_3\text{H}_7\text{OH}}\) = tensione di vapore dell’alcool alla temperatura considerata; si ha quindi:

\[(15, \Pi) \quad \mu^l_{\text{n-C}_3\text{H}_7\text{OH}} - \mu^o_{\text{n-C}_3\text{H}_7\text{OH}} = RT \ln P^*_{\text{s,n-C}_3\text{H}_7\text{OH}}\]

Portando nella (10, \(\Pi\)) e supposto: \(\mu^l_{\text{n-C}_3\text{H}_7\text{OH}} = \mu^o_{\text{n-C}_3\text{H}_7\text{OH}}\) (ossia trascu-
rando la variazione del potenziale chimico del liquido con la pressione) si ottiene:

\[\Delta G^\text{col}_{n-\text{C}_2\text{H}_5\text{OH}} = \Delta G^\text{col}_{n-\text{C}_2\text{H}_5\text{OH}} + RT \ln P^*_{s, n-\text{C}_2\text{H}_5\text{OH}}. \]

Se i vapori si possono ritenere ideali \(P^* \cong P_s \) e:

\[\Delta G^\text{col}_{n-\text{C}_2\text{H}_5\text{OH}} = \Delta G^\text{col}_{n-\text{C}_2\text{H}_5\text{OH}} + RT \ln P_{s, n-\text{C}_2\text{H}_5\text{OH}}. \]

Il \(\Delta G^\circ \) di formazione di un composto allo stato condensato (liquido o solido) è uguale al \(\Delta G^\circ \) di formazione del composto allo stato gassoso più il prodotto \(RT \ln P^* \) (\(P_s \) essendo la tensione di vapore del composto alla temperatura considerata).

Dati di tensione di vapore di composti organici si trovano ad esempio su Rossini e coll. [81], Maxwell [60], Timmermans [98], Jordan [43], Perry [75] ecc.

La relazione (16, II) poteva essere dimostrata più rapidamente per altra via; in effetti il \(\Delta G^\circ \) di formazione del composto allo stato condensato (a \(P = 1 \) atm) è uguale al \(\Delta G^\circ \) di formazione allo stato gassoso, più il lavoro di trasporto dalle condizioni di riferimento allo stato condensato. Si consideri un sistema all’equilibrio alla temperatura considerata, contenente il composto in esame allo stato puro condensato, in presenza del proprio vapore. I potenziali chimici del composto nelle due fasi sono uguali; pertanto il lavoro di trasporto del composto dallo stato gassoso a \(P^* = 1 \) atm allo stato liquido alla pressione \(P_s \) è uguale a \(RT \ln P^*/P_s \), dove \(P_s \) è la tensione di vapore del composto in esame. Il lavoro di trasporto del liquido dalla pressione \(P_s \) alla pressione di 1 atm può in molti casi essere trascurato.

4. Calcolo delle entalpie libere di formazione (\(\Delta G^\circ \)) per composti organici in soluzione. — Nota la tensione di vapore di un composto e la sua solubilità in un dato solvente, è possibile calcolare, con l’ausilio del metodo dei contributi di gruppo, il \(\Delta G^\circ \) di formazione dagli elementi del composto in soluzione nel solvente considerato.

Si supponga ad es. di voler calcolare il \(\Delta G^\circ \) di formazione dell’acido succinico in soluzione acetonica.

Con il metodo dei contributi di gruppo è possibile calcolare il \(\Delta G^\circ \) di formazione dagli elementi dell’acido succinico allo stato gassoso (ipotetico) per il quale \(P^* = P = 1 \) atm, alla temperatura considerata.

Nota la tensione di vapore dell’acido succinico, si può calcolare il \(\Delta G^\circ \) di formazione del composto allo stato solido. Per calcolare il lavoro di trasporto dallo stato solido allo stato di soluzione nel solvente considerato e alla concentrazione scelta come stato di riferimento, è necessario disporre di dati di solubilità.
Si consideri un sistema costituito da una soluzione satura di acido succinico in acetone; all’equilibrio risulta:

\[(18, \text{II}) \quad \mu_{\text{Ac,succinico}}^c = \mu_{\text{Ac,succinico}}^{\text{soluz.}}\]

\[(19, \text{II}) \quad \mu_{\text{Ac,succinico}}^c = \mu_{\text{Ac,succinico}}^{\text{soluz.}} + RT \ln a_{\text{Ac,succinico}}^{\text{soluz.}}\]

\(a = \) attività dell’acido in soluzione; i valori numerici di \(a\) e di \(\mu^o\) dipendono dallo stato di riferimento.

Poiché si è in presenza di corpo di fondo, l’attività può essere calcolata dai dati di solubilità. Ad es., se si potesse ammettere che la soluzione fosse ideale risulterebbe, assumendo per lo stato di riferimento la soluzione avente molalità unitaria (stato ipotetico):

\[(20, \text{II}) \quad a = m;\]

ove \(m\) è la solubilità dell’acido succinico in acetone, alla temperatura considerata, espressa in termini di molalità.

Dati di solubilità di composti organici in diversi solventi si trovano ad esempio in Stephen e Stephen [92] e Seidel (84, 85) e per composti inorganici e metallorganici in Seidel [86].

È opportuno precisare che questi metodi di calcolo, per sostanze condensate o in soluzione, sono soltanto approssimati, talvolta in modo grossolano.

5. Valutazione dei \(\Delta H^o\) di formazione di composti organici. — Sono stati proposti (vedi ad esempio Reid e Sherwood [77]) diversi metodi per la valutazione più o meno approssimata, dei \(\Delta H^o\) di formazione di composti organici supposti allo stato gassoso, nello stato ipotetico di riferimento per il quale \(P^\circ = P^o = 1\ atm.\)

In questo paragrafo riporteremo il metodo di Franklin [24] che consente di valutare i \(\Delta H^o\) di formazione di molti composti organici non alogenati anche fino a temperature di 1500 °K. Anche per i composti organici alogenati sono stati proposti metodi per la valutazione dei \(\Delta H^o\) di formazione dagli elementi [77], ma per tali composti l’errore che si commette può essere rilevante ed è consigliabile ricorrere soltanto ai dati propri di ciascun composto, riportati nella letteratura [81, 5], [11].

Il metodo di Franklin si basa anch’esso sui contributi di gruppo, come il metodo di Van Krevelen e Chermin, visto precedentemente per il calcolo dei \(\Delta G^o\) di formazione. Anche in questo caso si deve tener conto di termini correttivi per la presenza di anelli o di ramificazioni nella molecola.

I dati numerici necessari per effettuare i calcoli sono riportati nella tabella (17, II) per alcuni valori della temperatura. I gruppi contenuti in composti aromatici ed i doppî legami coniugati, sono indicati con gli stessi simboli riportati nel paragrafo relativo al calcolo dei \(\Delta G^o\).
Tabella (17, II) - Contributo di gruppi per il calcolo dei ΔH^o di formazione di composti organici allo stato gassoso ideale ($P^o = P = 1$ atm) (da Franklin [24]).

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>kcal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°K</td>
</tr>
<tr>
<td>$-\text{CH}_3$</td>
<td>—</td>
</tr>
<tr>
<td>$-\text{CH}_2-$</td>
<td>—</td>
</tr>
<tr>
<td>CH</td>
<td>0,18</td>
</tr>
<tr>
<td>C</td>
<td>1,74</td>
</tr>
<tr>
<td>H_3C--</td>
<td>7,26</td>
</tr>
<tr>
<td>$\text{C}=$</td>
<td>16,73</td>
</tr>
<tr>
<td>H</td>
<td>19,03</td>
</tr>
<tr>
<td>$\text{C}=$</td>
<td>20,31</td>
</tr>
</tbody>
</table>

(Continua)
<table>
<thead>
<tr>
<th>Gruppo</th>
<th>kcal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 °K</td>
</tr>
<tr>
<td>C=CH₂</td>
<td>18,20</td>
</tr>
<tr>
<td>C=CH</td>
<td>21,10</td>
</tr>
<tr>
<td>C=C'H</td>
<td>25,08</td>
</tr>
<tr>
<td>C=C''</td>
<td>33,0</td>
</tr>
<tr>
<td>C=</td>
<td>27,16</td>
</tr>
<tr>
<td>H-C=</td>
<td>27,12</td>
</tr>
<tr>
<td>C≡</td>
<td>4,00</td>
</tr>
<tr>
<td>CH</td>
<td>5,76</td>
</tr>
<tr>
<td>C⁻</td>
<td>5,29</td>
</tr>
</tbody>
</table>

(Continua)
<table>
<thead>
<tr>
<th>Gruppo</th>
<th>kcal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 °K</td>
</tr>
<tr>
<td>$\leftrightarrow \text{CH}_2$</td>
<td>11,3</td>
</tr>
<tr>
<td>$\leftrightarrow \text{C} \rightarrow$</td>
<td>12,65</td>
</tr>
<tr>
<td>$- \text{OH}$ (primario)</td>
<td>- 40,1</td>
</tr>
<tr>
<td>$- \text{OH}$ (secondario)</td>
<td>- 43,1</td>
</tr>
<tr>
<td>$- \text{OH}$ (terziario)</td>
<td>- 46,9</td>
</tr>
<tr>
<td>$- \text{OH}$ (fenolo)</td>
<td>- 44,0</td>
</tr>
<tr>
<td>$\text{H} \backslash \text{C}=\text{O}$</td>
<td>- 32,7</td>
</tr>
<tr>
<td>$\backslash \text{C}=\text{O}$</td>
<td>- 30,6</td>
</tr>
<tr>
<td>$- \text{C}=\text{O}$</td>
<td>- 93,1</td>
</tr>
</tbody>
</table>

(Continua)
Tabella (17, II) (continua)

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>kcal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 °K</td>
</tr>
<tr>
<td>-C≡O</td>
<td></td>
</tr>
<tr>
<td>(estere)</td>
<td></td>
</tr>
<tr>
<td>-O-</td>
<td></td>
</tr>
<tr>
<td>(etero)</td>
<td></td>
</tr>
<tr>
<td>-C=O</td>
<td></td>
</tr>
<tr>
<td>-C≡O</td>
<td></td>
</tr>
<tr>
<td>-NH₂</td>
<td></td>
</tr>
<tr>
<td>(alchilammine)</td>
<td>2,8</td>
</tr>
<tr>
<td>/NH</td>
<td></td>
</tr>
<tr>
<td>\N</td>
<td></td>
</tr>
<tr>
<td>\N</td>
<td></td>
</tr>
<tr>
<td>-NH₂</td>
<td></td>
</tr>
<tr>
<td>(anilina)</td>
<td></td>
</tr>
<tr>
<td>-NO₂</td>
<td></td>
</tr>
<tr>
<td>-ONO</td>
<td></td>
</tr>
</tbody>
</table>

(Continua)
<table>
<thead>
<tr>
<th>Gruppo</th>
<th>kcal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 °K</td>
</tr>
<tr>
<td>-ONO₂</td>
<td></td>
</tr>
<tr>
<td>-C≡N</td>
<td></td>
</tr>
<tr>
<td>-N=C</td>
<td></td>
</tr>
<tr>
<td>-SH</td>
<td></td>
</tr>
<tr>
<td>-S</td>
<td></td>
</tr>
<tr>
<td>↔S↔</td>
<td></td>
</tr>
</tbody>
</table>

termini correttivi per cicloparaffine

Anello a 6 atomi di C	1,10	0,45	1,13	1,67	1,96	2,12	1,86	1,41	0,52
Anello a 5 atomi di C	6,72	5,68	4,94	4,28	3,74	3,00	2,57	2,22	1,96
Anello a 4 atomi di C	18,8	18,4	18,0	17,6	17,0	16,4	15,6	15,2	14,4
Anello a 3 atomi di C	24,4	24,22	23,87	23,58	23,38	22,89	22,50	22,15	21,60

(Continua)
<table>
<thead>
<tr>
<th>Gruppo</th>
<th>0 °K</th>
<th>298 °K</th>
<th>400 °K</th>
<th>500 °K</th>
<th>600 °K</th>
<th>800 °K</th>
<th>1000 °K</th>
<th>1200 °K</th>
<th>1500 °K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_5) laterale</td>
<td>1,5</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>3 (-\text{CH-}) adiacenti</td>
<td>1,6</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>un (-\text{CH-}) ed un (-\text{CH-}) adiacenti</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>due (-\text{CH-}) adiacenti</td>
<td>5,0</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
<td>5,4</td>
</tr>
<tr>
<td>(-\text{CH-}) non adiacenti a metil terminali</td>
<td>2,1</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>termini correttivi per paraffine ramificate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 1,2-dimetil o 1,3-metiletil | 0,1 | 0,6 | 0,6 | 0,6 | 0,6 | 0,6 | 0,6 | 0,6 | 0,6 |
| 1,2-metiletil o 1,2,3-trimetil | 0,9 | 1,4 | 1,4 | 1,4 | 0,6 | 0,6 | 0,6 | 0,6 | 0,6 |
| termini correttivi per sostituenti in anelli aromatici |
Gli errori che si commettono nel calcolo dei ΔH° di formazione degli idrocumarburi, applicando il metodo di Franklin, sono generalmente contenuti entro ± 0,5 kcal/mole.

Si calcola ad esempio per $T = 298 \, ^\circ\text{K}$ [77]:

n-eptano: $- 44,87$ kcal/mole (valore sperim.: $- 44,89$ kcal/mole);

$2,2,3$-trimetilbutano: $- 48,39$ kcal/mole;

$\text{cis}-\text{butene-2}$: $- 1,36$ kcal/mole;

etilbenzene: $+ 7,02$ kcal/mole.

Per i composti non idrocumarburi gli errori sono in media più elevati; ad es. per i seguenti composti, si calcola, per $T = 298 \, ^\circ\text{K}$:

acetaldeide: $- 44,0$ kcal/mole (valore sperim.: $- 39,76$ kcal/mole);

acetone: $- 51,8$ kcal/mole;

acido acetico: $- 104,7$ kcal/mole;

metanolo: $- 52,0$ kcal/mole;

alcool n-propilico: $- 61,87$ kcal/mole;

alcool isopropilico: $- 67,2$ kcal/mole.

Per taluni composti il metodo di Franklin fornisce errori troppo rilevanti per poter essere applicato; questo è il caso ad es. dell’idrazina ($\Delta H^\circ_{298^\circ\text{K}}$ calc.: 5,6 kcal/mole; $\Delta H^\circ_{298^\circ\text{K}}$ sperim.: 22,5 kcal/mole), del cianogeno: $\Delta H^\circ_{298^\circ\text{K}}$ calc.: 59,0 kcal/mole; $\Delta H^\circ_{298^\circ\text{K}}$ sperim.: 73,84 kcal/mole) e dell’anidride acetica ($\Delta H^\circ_{298^\circ\text{K}}$ calc.: $- 122,8$ kcal/mole; $\Delta H^\circ_{298^\circ\text{K}}$ sperim.: $- 148,82$ kcal/mole).

Il metodo di Franklin consente di calcolare i ΔH° di formazione dagli elementi dei composti supposti nello stato gassoso ipotetico di riferimento. Il calcolo dei ΔH° per gli stessi composti allo stato condensato si effettua tenendo conto dell’entalpia di condensazione. Dati di entalpie di condensazione per composti organici sono riportati ad es. da Rossini e coll. [81], da Dreisbach [20] e sul Beilstein [5] (vedi inoltre par. 10 di questo capitolo).

Ad es. per un composto allo stato liquido:

$\Delta H^\circ_{\text{cal}} = \Delta H^\circ_{\text{og}} + \Delta H^\circ_{\text{cond.}}$

ove:

$\Delta H^\circ_{\text{cal}}$ e $\Delta H^\circ_{\text{og}}$ ΔH° di formazione dagli elementi del composto, rispettivamente allo stato liquido e allo stato di gas ideale, alla temperatura considerata e a pressione atmosferica.

6. ΔG° e ΔH° di formazione di ioni in soluzione acquosa e di composti inorganici. — Per i composti inorganici non si dispone ovviamente di un metodo di calcolo di funzioni termodinamiche avente validità generale, come i metodi basati sui contributi di gruppo riportati per i composti organici.
In questi casi si deve quindi ricorrere volta per volta alla letteratura specializzata [80].

Nelle tabelle (18, II), (19, II) e (20, II) sono riportati i valori dei ΔH^o e dei ΔG^o di formazione di alcuni ioni in soluzione acquosa e di alcuni composti inorganici allo stato puro o in soluzione acquosa, per $T = 25^\circ C$. La valutazione di queste grandezze, per temperature diverse da 25 °C, si effettua con l’ausilio delle equazioni (151, I) (152, I) e (153, I), noti i calori molarì nell’intervallo di temperatura considerato ed eventualmente i calori latenti se vi è cambiamento di stato.

Tabella (18, II) - ΔG^o e ΔH^o standard di formazione di elettroliti e di ioni in soluzione acquosa. Stato ipotetico $m = 1$; $T = 25^\circ C$; $P = 1$ atm. (kcal/mol) (o kcal/g atomo) (da Rossini e coll. [80]).

| Specie | ΔG^o | ΔH^o | Specie | ΔG^o | ΔH^o
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H$^+$</td>
<td>0</td>
<td>0</td>
<td>Ca$^{++}$</td>
<td>-132,18</td>
<td>-129,77</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>(*) - 177,34</td>
<td>- 216,90</td>
<td>Ca(OH)$_2$</td>
<td>- 207,37</td>
<td>- 239,68</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>(*) - 177,34</td>
<td>- 216,90</td>
<td>CaSO$_4$</td>
<td>(*) - 309,52</td>
<td>- 346,67</td>
</tr>
<tr>
<td>HSO$_4^{-}$</td>
<td>(*) - 179,94</td>
<td>- 211,70</td>
<td>Cu$^{++}$</td>
<td>+ 15,53</td>
<td>+ 15,39</td>
</tr>
<tr>
<td>HCl</td>
<td>- 31,350</td>
<td>- 40,023</td>
<td>CuSO$_4$</td>
<td>(*) - 161,81</td>
<td>- 201,51</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>- 31,350</td>
<td>- 40,023</td>
<td>Na$^+$</td>
<td>- 62,589</td>
<td>- 57,279</td>
</tr>
<tr>
<td>H$_2$CO$_3$</td>
<td>- 149,00</td>
<td>- 167,0</td>
<td>NaOH</td>
<td>- 100,184</td>
<td>- 112,236</td>
</tr>
<tr>
<td>HCO$_3^{-}$</td>
<td>- 140,31</td>
<td>- 165,18</td>
<td>NaCl</td>
<td>- 93,939</td>
<td>- 97,302</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>- 126,22</td>
<td>- 161,63</td>
<td>NaHCO$_3$</td>
<td>- 222,5</td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>- 92,31</td>
<td>- 98,69</td>
<td>HNO$_3$</td>
<td>- 26,41</td>
<td>- 49,372</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>(*) - 6,54</td>
<td>- 9,4</td>
<td>CO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS$^-$</td>
<td>(*) - 3,01</td>
<td>- 4,22</td>
<td>ONH$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN</td>
<td>26,8</td>
<td>25,2</td>
<td>NH$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN$^-$</td>
<td>39,6</td>
<td>36,1</td>
<td>CO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCOOH</td>
<td>- 85,1</td>
<td>- 98,0</td>
<td>NH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCOO$^-$</td>
<td>- 80,0</td>
<td>- 98,0</td>
<td>NH$_2$OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH$^-$</td>
<td>- 37,595</td>
<td>- 54,957</td>
<td>NH$_3$OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>- 19,00</td>
<td>- 31,74</td>
<td>NH$_2$Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>- 71,76</td>
<td></td>
<td>CO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NH$_4$)$_2$CO$_3$</td>
<td>- 164,22</td>
<td>- 225,11</td>
<td>ONH$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_4$HCO$_3$</td>
<td>- 159,31</td>
<td>- 196,92</td>
<td>NH$_2$CO$_3$</td>
<td>- 81,11</td>
<td></td>
</tr>
<tr>
<td>NH$_4$NO$_3$</td>
<td>- 81,11</td>
<td></td>
<td>NH$_2$CO$_3$</td>
<td>- 48,72</td>
<td></td>
</tr>
<tr>
<td>(NH$_4$)$_2$SO$_4$</td>
<td>(*) - 280,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_3$</td>
<td>- 6,37</td>
<td>- 19,32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) da S rombico.
Tabella (19, II) - ΔG° e ΔH° standard di formazione di sostanze liquide o gassose allo stato puro a $T = 25^\circ C$ e $P = 1$ atm (per i gas, lo stato di riferimento è quello ipotetico per il quale $P^* = P = 1$ atm (kcal/mole) (da Rossini e coll. [80]).

<table>
<thead>
<tr>
<th>Sostanze allo stato gassoso</th>
<th>ΔG°</th>
<th>ΔH°</th>
<th>Sostanze allo stato liquido</th>
<th>ΔG°</th>
<th>ΔH°</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>-94,260</td>
<td>-94,052</td>
<td>H$_2$O</td>
<td>-56,690</td>
<td>-68,317</td>
</tr>
<tr>
<td>CO</td>
<td>-32,808</td>
<td>-26,4157</td>
<td>H$_2$O$_2$</td>
<td>-44,84</td>
<td></td>
</tr>
<tr>
<td>CS$_2$(*)</td>
<td>15,55</td>
<td>27,55</td>
<td>HNO$_3$</td>
<td>-19,100</td>
<td>41,404</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-54,635</td>
<td>-57,798</td>
<td>HNO$_3$ - H$_2$O</td>
<td>78,41</td>
<td>112,96</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>25,24</td>
<td>-32,52</td>
<td>HNO$_3$ - 3 H$_2$O</td>
<td>-193,70</td>
<td>252,20</td>
</tr>
<tr>
<td>H$_2$S(*)</td>
<td>7,892</td>
<td>4,815</td>
<td>HCN</td>
<td>29,0</td>
<td>25,2</td>
</tr>
<tr>
<td>HCN</td>
<td>28,7</td>
<td>31,2</td>
<td>H$_2$SO$_4$</td>
<td>-193,91</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>-22,769</td>
<td>-22,063</td>
<td>SO$_3$(*)</td>
<td>-104,67</td>
<td></td>
</tr>
<tr>
<td>S(*)</td>
<td>43,57</td>
<td>53,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO$_4$(*)</td>
<td>-71,79</td>
<td>70,96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO$_3$(*)</td>
<td>-88,52</td>
<td>94,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_3$</td>
<td>-3,976</td>
<td>-11,046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>20,72</td>
<td>21,60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_2$</td>
<td>12,39</td>
<td>8,09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N$_2$O</td>
<td>23,49</td>
<td>2,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N$_2$O$_2$</td>
<td>24,76</td>
<td>19,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N$_2$O$_3$</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) da S rombico.

Nella tabella (21, II) sono riportati i ΔH di formazione a 25 °C, di composti inorganici in soluzione acquosa a diverse concentrazioni.

Dai dati riportati in queste tabelle, si osserva che sono verificate le seguenti relazioni, riportate nel capitolo precedente.

Per elettroliti forti, del tipo MX:

(22, II)
$$ \Delta G_{MX,m=1}^{0,aq(ip.)} = \Delta G_{M^+,m=1}^{0,aq(ip.)} + \Delta G_{X^-,m=1}^{0,aq(ip.)}. $$

(23, II)
$$ \Delta H_{MX,m=1}^{0,aq(ip.)} = \Delta H_{M^+,m=1}^{0,aq(ip.)} + \Delta H_{X^-,m=1}^{0,aq(ip.)}. $$

Per qualunque elettrolito in soluzione acquosa:

(24, II)
$$ \Delta H_{m=1}^{0,aq(ip.)} = \Delta H_{m=0}^{aq}. $$
Tabella (20, II) - ΔG° e ΔH° standard di formazione di sostanze solide allo stato puro cristallino a $T = 25^\circ C$ e $P = 1$ atm (kcal/mole) (da Rossini e coll. [80]).

<table>
<thead>
<tr>
<th>Sostanza</th>
<th>ΔG°</th>
<th>ΔH°</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH_2HCO_3</td>
<td>-48,73</td>
<td>203,7</td>
</tr>
<tr>
<td>NH_4Cl</td>
<td>-87,27</td>
<td>281,86</td>
</tr>
<tr>
<td>NH_4NO_3</td>
<td>-215,19</td>
<td>244,83</td>
</tr>
<tr>
<td>$\text{(NH}_4)_2\text{SO}_4$</td>
<td>109,47</td>
<td>154,21</td>
</tr>
<tr>
<td>CO_2ONH_4</td>
<td>47,12</td>
<td>79,634</td>
</tr>
<tr>
<td>CaC_2</td>
<td>16,2</td>
<td>15,0</td>
</tr>
<tr>
<td>CaCO_3 (calcite)</td>
<td>269,78</td>
<td>288,45</td>
</tr>
<tr>
<td>(aragonite)</td>
<td>269,53</td>
<td>288,49</td>
</tr>
<tr>
<td>CaCN_2</td>
<td>-84,0</td>
<td></td>
</tr>
<tr>
<td>CaCl_2</td>
<td>-179,3</td>
<td>190,0</td>
</tr>
<tr>
<td>CaO</td>
<td>-144,4</td>
<td>151,9</td>
</tr>
<tr>
<td>Ca(OH)_2</td>
<td>-214,33</td>
<td>235,80</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{(PO}_4)_2$ (α)</td>
<td>-929,7</td>
<td>986,2</td>
</tr>
<tr>
<td>(β)</td>
<td>-932,0</td>
<td>988,9</td>
</tr>
<tr>
<td>CaSO_4 (anidrite)</td>
<td>-315,56</td>
<td>342,42</td>
</tr>
<tr>
<td>$\text{CaSO}_4 \cdot \frac{1}{2} \text{H}_2\text{O}$ (α)</td>
<td>-343,02</td>
<td>376,47</td>
</tr>
<tr>
<td>$\text{CaSO}_4 \cdot 2 \text{H}_2\text{O}$</td>
<td>-429,19</td>
<td>483,06</td>
</tr>
<tr>
<td>C (grafite)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe_3O_4 (ematite)</td>
<td>-177,1</td>
<td>196,5</td>
</tr>
<tr>
<td>Fe_3O_4 (magnetite)</td>
<td>-242,4</td>
<td>267,0</td>
</tr>
<tr>
<td>FeS_2 (pirite)</td>
<td>-39,84</td>
<td>42,52</td>
</tr>
<tr>
<td>FeS (α)</td>
<td>23,32</td>
<td>22,72</td>
</tr>
<tr>
<td>FeSO_4</td>
<td>-220,5</td>
<td></td>
</tr>
<tr>
<td>P (bianco)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CuO</td>
<td>30,4</td>
<td>37,1</td>
</tr>
<tr>
<td>Cu_2O</td>
<td>-34,98</td>
<td>39,84</td>
</tr>
<tr>
<td>CuS</td>
<td>11,7</td>
<td>11,6</td>
</tr>
<tr>
<td>CuSO_4</td>
<td>-158,2</td>
<td>184,00</td>
</tr>
<tr>
<td>$\text{CuSO}_4 \cdot 5 \text{H}_2\text{O}$</td>
<td>-449,3</td>
<td>544,45</td>
</tr>
<tr>
<td>Na_2CO_3</td>
<td>-250,4</td>
<td>270,3</td>
</tr>
<tr>
<td>NaHCO_3</td>
<td>-203,6</td>
<td>226,5</td>
</tr>
<tr>
<td>NaCl</td>
<td>91,79</td>
<td>98,232</td>
</tr>
<tr>
<td>NaOH</td>
<td></td>
<td>101,99</td>
</tr>
<tr>
<td>$\text{NaOH \cdot H}_2\text{O}$</td>
<td>149,00</td>
<td>175,17</td>
</tr>
<tr>
<td>Na_2SO_4</td>
<td>-302,78</td>
<td>330,90</td>
</tr>
<tr>
<td>NaHSO_4</td>
<td>269,2</td>
<td></td>
</tr>
<tr>
<td>S (rombico)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZnO</td>
<td>-76,05</td>
<td>83,17</td>
</tr>
<tr>
<td>Zn_2S_4 (sfalerite: blenda)</td>
<td>-47,4</td>
<td>48,5</td>
</tr>
<tr>
<td>ZnSO_4</td>
<td>-208,31</td>
<td>233,88</td>
</tr>
</tbody>
</table>
Tabella (21, II) - ΔH di formazione di elettroliti in soluzione acquosa, a 25°C (in kcal/mole) (da Rossini e coll. [80]).

| Stato della soluzione | HCl | H$_3$SO$_4$ | HNO$_3$ | HCOOH | NH$_4$OH | NaOH | NaCl | NH$_4$NO$_2$ | Na$_2$CO$_3$
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>aq (ip.), $m = 1$</td>
<td>-40,023</td>
<td>-216,90</td>
<td>-49,372</td>
<td>-98,0</td>
<td>-87,64</td>
<td>-112,236</td>
<td>-97,302</td>
<td>-81,11</td>
<td></td>
</tr>
<tr>
<td>1 mol H$_2$O</td>
<td>-28,331</td>
<td>-200,62</td>
<td>-44,538</td>
<td>-98,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 » »</td>
<td>-37,371</td>
<td>-207,78</td>
<td>-48,270</td>
<td>-97,96</td>
<td>-87,42</td>
<td>-111,015</td>
<td></td>
<td>-83,03</td>
<td></td>
</tr>
<tr>
<td>10 » »</td>
<td>-38,671</td>
<td>-209,93</td>
<td>-49,014</td>
<td>-97,94</td>
<td>-87,55</td>
<td>-112,148</td>
<td>-97,768</td>
<td>-82,46</td>
<td></td>
</tr>
<tr>
<td>20 » »</td>
<td>-39,218</td>
<td>-211,00</td>
<td>-49,212</td>
<td></td>
<td>-87,59</td>
<td>-112,235</td>
<td>-97,572</td>
<td>-81,95 -277,91</td>
<td></td>
</tr>
<tr>
<td>30 » »</td>
<td>-39,413</td>
<td>-211,28</td>
<td>-49,234</td>
<td></td>
<td>-87,60</td>
<td>-112,203</td>
<td>-97,455</td>
<td>-81,72 -277,55</td>
<td></td>
</tr>
<tr>
<td>1000 » »</td>
<td>-39,913</td>
<td>-212,69</td>
<td>-49,286</td>
<td></td>
<td></td>
<td>-112,139</td>
<td>-97,228</td>
<td>-81,10</td>
<td></td>
</tr>
<tr>
<td>5000 » »</td>
<td>-39,972</td>
<td>-214,09</td>
<td>-49,323</td>
<td></td>
<td></td>
<td>-112,186</td>
<td>-97,260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞ (*) » »</td>
<td>-40,023</td>
<td>-216,90</td>
<td>-49,372</td>
<td>-98,0</td>
<td>-87,64</td>
<td>-112,236</td>
<td>-97,302</td>
<td>-81,11</td>
<td></td>
</tr>
</tbody>
</table>

(*) $m \to 0$.

Rassegne di tali metodi sono riportate da Reid e Sherwood [77] e da Gamble [27].

I calori molar a volume costante e rispettivamente a pressione costante di un dato gas sono forniti dalle relazioni:

\[(25, \text{II}) \]
\[c_v = \left(\frac{\partial u}{\partial T} \right)_v, \]

\[(26, \text{II}) \]
\[c_p = \left(\frac{\partial h}{\partial T} \right)_p; \]

ove:

\[c_v \text{ e } c_p = \text{calore molare rispettivamente a volume costante e a pressione costante (cal/mole °C);} \]

\[u, h = \text{energia interna molare e rispettivamente entalpia molare del gas puro.} \]

Queste due grandezze sono legate tra loro dalla seguente relazione, per la dimostrazione della quale si rimanda ai testi di Chimica Fisica:

\[(27, \text{II}) \]
\[c_p = c_v + \left[\left(\frac{\partial u}{\partial V} \right)_T + P \right] \left(\frac{\partial V}{\partial T} \right)_p. \]

Per i gas ideali questa relazione diventa:

\[(28, \text{II}) \]
\[c_p = c_v + R. \]

Per pressioni tendenti a zero, tutti i gas si comportano idealmente e pertanto, in tali condizioni, la (28, II) è sempre verificata.

In questo paragrafo verrà trattato il calcolo dei calori molar dei gas ideali. Le grandezze corrispondenti verranno indicate con \(c_p^o \) e \(c_v^o \). (Queste grandezze sono uguali ai corrispondenti calori molar del gas nel proprio stato ipotetico di riferimento a \(P^o = P^o = 1 \text{ atm} \)).

Dalle equazioni (26 e 27, II) si osserva che il calcolo dei calori molar dei gas ideali può essere effettuato nota la funzione \(u \).
L’energia interna di un gas ideale, tenuto presente che tra le molecole di quest’ultimo non vi sono interazioni, dipende solo dalla natura del gas e dalla temperatura. L’energia interna molare \(u \) di un gas ideale può quindi essere calcolata facendo riferimento ad una molecola isolata. L’energia \(u \) si può scindere nelle seguenti componenti:

1° \(u_{\text{trasl.}} \) = energia connessa al moto traslatorio della molecola considerata rigida;

2° \(u_{\text{rot.est.}} \) = energia connessa al moto rotatorio della molecola considerata rigida;

3° \(u_{\text{rot.int.}} \) = energia connessa al moto rotatorio, rispetto al resto della molecola, di ciascun gruppo di atomi contenuti nella molecola; ad es. attorno a legami C—C o C—O (negli eteri e negli esteri);

4° \(u_{\text{vibr.ass.}} \) = energia connessa alla vibrazione di ciascun legame contenuto nella molecola, nella direzione del legame;

5° \(u_{\text{vibr.ang.}} \) = energia connessa alla vibrazione di ciascun legame contenuto nella molecola, rispetto ad ogni legame adiacente;

6° Altre componenti (elettronica, nucleare, relativistica) il cui contributo al valore dell’energia interna si può ritenere — per i nostri scopi — indipendente dalla temperatura.

La teoria cinetica dei gas consente di valutare, per i gas ideali, le prime due componenti sopra riportate; come è ben noto, questa teoria prevede che ciascun grado di libertà della molecola contribuisca per \(\frac{1}{2} R \) al valore di \(c_v^o \) (principio di equipartizione dell’energia); si hanno pertanto i seguenti valori:

gas ideali monoatomici (3 gradi di libertà per la traslazione):

\[
\begin{align*}
 c_v^o &= \frac{3}{2} R \text{ cal/mole } ^\circ\text{C}; \\
 c_p^o &= \frac{5}{2} R \text{ cal/mole } ^\circ\text{C};
\end{align*}
\]

(29, II)

gas ideali biatomici (3 gradi di libertà per la traslazione, 2 per la rotazione esterna — il contributo dovuto alla rotazione della molecola attorno al legame che congiunge i due atomi si può trascurare):

\[
\begin{align*}
 c_v^o &= \frac{5}{2} R \text{ cal/mole } ^\circ\text{C}; \\
 c_p^o &= \frac{7}{2} R \text{ cal/mole } ^\circ\text{C}.
\end{align*}
\]

(30, II)
Questa teoria non prevede variazioni dei calori molari dei gas con la temperatura.

In pratica si osserva che i calori molari dei gas, soprattutto se poliatomici, variano sensibilmente con la temperatura. Ciò è dovuto a due ragioni fondamentali: anzitutto, alle bassissime temperature il principio dell’equipartizione dell’energia tra i gradi di libertà relativi alla traslazione e alla rotazione esterna, non è più verificato; ad es., mentre tra 250 °K e 700 °K il \(c_p \) dell’Argo a 0,01 atm è sempre uguale a 4,968 cal/mole °C [36], dai dati riportati nella tabella (22, II), si può osservare che alle basse temperature il calore molare dell’idrogeno a pressione costante è minore di \(7/2 \, R \) (\(= 6,955 \, \text{cal/mole °C} \)), mentre ad alta temperatura supera 7 cal/mole °C.

Tabella (22, II) - Calore molare a pressione costante \((c_p^0) \) dell’idrogeno ad alcune temperature [36].

<table>
<thead>
<tr>
<th>(T) (°K)</th>
<th>(c_p^0) (cal/mole °C)</th>
<th>(T) (°K)</th>
<th>(c_p^0) (cal/mole °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4,977</td>
<td>500</td>
<td>6,993</td>
</tr>
<tr>
<td>100</td>
<td>5,393</td>
<td>1000</td>
<td>7,219</td>
</tr>
<tr>
<td>200</td>
<td>6,518</td>
<td>2000</td>
<td>8,195</td>
</tr>
<tr>
<td>300</td>
<td>6,893</td>
<td>3000</td>
<td>8,859</td>
</tr>
<tr>
<td>400</td>
<td>6,975</td>
<td>5000</td>
<td>9,749</td>
</tr>
</tbody>
</table>

Inoltre il contributo dei termini \(u_{\text{rot.int.}} \) e \(u_{\text{vibr.}} \) aumenta all’aumentare della temperatura, soprattutto per le molecole più complesse.

La teoria cinetica non può prevedere il contributo dovuto in particolare all’energia connessa alle vibrazioni interne delle molecole. Per questa ragione, per calcolare il calore molare dei gas, sono spesso utilizzate relazioni empiriche del tipo seguente:

\[
\begin{align*}
 c_p &= a + b \, T + c \, T^2 \\
 c_p &= a + b \, T + c/T^2 \\
 c_p &= a + b \, T + c \, T^2 + d \, T^3;
\end{align*}
\]

ove:

\(T \) = temperatura;

\(a, b, c, d, \) = coefficienti empirici diversi per le tre equazioni.

Queste relazioni, che spesso consentono di valutare i calori molari con buona approssimazione, richiedono evidentemente la conoscenza di diversi parametri, propri di ciascun gas. I valori dei parametri che figurano nella prima delle (31, II) relative ad alcuni gas, sono riportati nella tabella (23, II).
Tabella (23, II) - Calori molari di gas allo stato ideale. Costanti dell'equazione: \(c_p^0 = a + bT + cT^2 \) (cal/mole °C) per \(T \) compreso tra 288 e 1500 °K (da Smith e Van Ness [90] e letteratura ivi citata).

<table>
<thead>
<tr>
<th>Composto</th>
<th>Formula</th>
<th>(a \times 10^2)</th>
<th>(b \times 10^4)</th>
<th>(c \times 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffine lineari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metano</td>
<td>(\text{CH}_4)</td>
<td>3,381</td>
<td>18,044</td>
<td>—</td>
</tr>
<tr>
<td>etano</td>
<td>(\text{C}_2\text{H}_6)</td>
<td>2,247</td>
<td>38,201</td>
<td>—</td>
</tr>
<tr>
<td>propano</td>
<td>(\text{C}_3\text{H}_8)</td>
<td>2,410</td>
<td>57,195</td>
<td>—</td>
</tr>
<tr>
<td>(n)-butano</td>
<td>(\text{C}4\text{H}{10})</td>
<td>3,844</td>
<td>73,350</td>
<td>—</td>
</tr>
<tr>
<td>(n)-pentano</td>
<td>(\text{C}5\text{H}{12})</td>
<td>4,895</td>
<td>90,113</td>
<td>—</td>
</tr>
<tr>
<td>(n)-esano</td>
<td>(\text{C}6\text{H}{14})</td>
<td>6,011</td>
<td>106,746</td>
<td>—</td>
</tr>
<tr>
<td>(n)-eptano</td>
<td>(\text{C}7\text{H}{16})</td>
<td>7,094</td>
<td>123,447</td>
<td>—</td>
</tr>
<tr>
<td>(n)-ottano</td>
<td>(\text{C}8\text{H}{18})</td>
<td>8,163</td>
<td>140,217</td>
<td>—</td>
</tr>
<tr>
<td>Incremento per ogni atomo di C per le paraffine superiori al (n)-ottano</td>
<td></td>
<td>1,097</td>
<td>16,667</td>
<td>5,338</td>
</tr>
<tr>
<td>(\alpha)-olefine lineari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etilene</td>
<td>(\text{C}_2\text{H}_4)</td>
<td>2,830</td>
<td>28,601</td>
<td>—</td>
</tr>
<tr>
<td>propilene</td>
<td>(\text{C}_3\text{H}_6)</td>
<td>3,253</td>
<td>45,116</td>
<td>—</td>
</tr>
<tr>
<td>butene-1</td>
<td>(\text{C}_4\text{H}_8)</td>
<td>3,909</td>
<td>62,848</td>
<td>—</td>
</tr>
<tr>
<td>pentene-1</td>
<td>(\text{C}5\text{H}{10})</td>
<td>5,347</td>
<td>78,990</td>
<td>—</td>
</tr>
<tr>
<td>esene-1</td>
<td>(\text{C}6\text{H}{12})</td>
<td>6,399</td>
<td>95,732</td>
<td>—</td>
</tr>
<tr>
<td>eptene-1</td>
<td>(\text{C}7\text{H}{14})</td>
<td>7,488</td>
<td>112,440</td>
<td>—</td>
</tr>
<tr>
<td>ottene-1</td>
<td>(\text{C}8\text{H}{16})</td>
<td>8,592</td>
<td>129,076</td>
<td>—</td>
</tr>
<tr>
<td>Incremento per ogni atomo di C per le olefine superiori all'ottene</td>
<td></td>
<td>1,097</td>
<td>16,667</td>
<td>5,338</td>
</tr>
<tr>
<td>Composti vari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetaldeide (*)</td>
<td>(\text{C}_2\text{H}_4\text{O})</td>
<td>3,364</td>
<td>35,722</td>
<td>—</td>
</tr>
<tr>
<td>acetilene</td>
<td>(\text{C}_2\text{H}_3)</td>
<td>7,331</td>
<td>12,622</td>
<td>—</td>
</tr>
<tr>
<td>acido cloridrico</td>
<td>HCl</td>
<td>6,732</td>
<td>0,433</td>
<td>0,370</td>
</tr>
<tr>
<td>acqua</td>
<td>(\text{H}_2\text{O})</td>
<td>7,256</td>
<td>2,298</td>
<td>0,233</td>
</tr>
<tr>
<td>alcool etilico</td>
<td>(\text{C}_2\text{H}_6\text{O})</td>
<td>6,990</td>
<td>39,741</td>
<td>—</td>
</tr>
<tr>
<td>alcool metilico</td>
<td>(\text{CH}_3\text{O})</td>
<td>4,394</td>
<td>24,274</td>
<td>—</td>
</tr>
<tr>
<td>ammoniaca</td>
<td>(\text{NH}_3)</td>
<td>6,086</td>
<td>8,812</td>
<td>—</td>
</tr>
<tr>
<td>anidride carbonica</td>
<td>(\text{CO}_2)</td>
<td>6,214</td>
<td>10,396</td>
<td>—</td>
</tr>
<tr>
<td>anidride solforica</td>
<td>(\text{SO}_3)</td>
<td>6,077</td>
<td>23,537</td>
<td>—</td>
</tr>
<tr>
<td>anidride solforosa</td>
<td>(\text{SO}_2)</td>
<td>7,116</td>
<td>9,512</td>
<td>3,511</td>
</tr>
<tr>
<td>azoto</td>
<td>(\text{N}_2)</td>
<td>6,524</td>
<td>1,250</td>
<td>—</td>
</tr>
<tr>
<td>benzene</td>
<td>(\text{C}_6\text{H}_6)</td>
<td>— 0,409</td>
<td>77,621</td>
<td>— 26,429</td>
</tr>
</tbody>
</table>

(Continua)
<table>
<thead>
<tr>
<th>Composto</th>
<th>Formula</th>
<th>a</th>
<th>$b \times 10^3$</th>
<th>$c \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>butadiene-1,3</td>
<td>C$_4$H$_6$</td>
<td>5,432</td>
<td>53,224</td>
<td>-17,649</td>
</tr>
<tr>
<td>cicloesano</td>
<td>C4H${12}$</td>
<td>-7,701</td>
<td>125,675</td>
<td>-41,584</td>
</tr>
<tr>
<td>cloro</td>
<td>Cl$_2$</td>
<td>7,576</td>
<td>2,424</td>
<td>0,965</td>
</tr>
<tr>
<td>idrogeno</td>
<td>H$_2$</td>
<td>6,947</td>
<td>-0,200</td>
<td>0,481</td>
</tr>
<tr>
<td>idrogeno solforato</td>
<td>H$_2$S</td>
<td>6,662</td>
<td>5,134</td>
<td>-0,854</td>
</tr>
<tr>
<td>ossido di azoto</td>
<td>NO</td>
<td>7,020</td>
<td>-0,370</td>
<td>2,546</td>
</tr>
<tr>
<td>ossido di carbonio</td>
<td>CO</td>
<td>6,420</td>
<td>1,665</td>
<td>-0,196</td>
</tr>
<tr>
<td>ossigeno</td>
<td>O$_2$</td>
<td>6,148</td>
<td>3,102</td>
<td>-0,923</td>
</tr>
<tr>
<td>toluene</td>
<td>C$_7$H$_8$</td>
<td>0,576</td>
<td>93,493</td>
<td>-31,227</td>
</tr>
</tbody>
</table>

(*) da 298 a 1000 °K.

Risultati sufficientemente precisi nel calcolo dei calori molari di molecole poliatomiche allo stato gassoso, si possono ottenere con l'ausilio della meccanica statistica. Questi metodi forniscono risultati molto soddisfacenti soprattutto per molecole non troppo complesse.

In questo paragrafo ci limiteremo a riportare il metodo di Bennewitz e Rossner [6] modificato da Dobratz [18], che ha validità sufficientemente generale per il calcolo approssimato di c_p dei composti organici allo stato gassoso. Questo metodo presuppone la conoscenza dei diversi gradi di libertà della molecola, connessi alle diverse possibilità di moto della molecola nel suo insieme e nelle sue parti. Questi gradi di libertà, per una molecola costituita da $n(n \geq 3)$ atomi, sono i seguenti:

- gradi di libertà totali della molecola: $3n$;
- gradi di libertà per la traslazione della molecola nel suo insieme: 3;
- gradi di libertà per la rotazione della molecola nel suo insieme (rotazione esterna) (per una molecola lineare, i gradi di libertà relativi alla rotazione esterna, agli effetti della valutazione del c_p, si devono ritenere uguali a 2) : 3;
- gradi di libertà per la rotazione di una parte della molecola rispetto all'altra parte (rotazione interna): n_r;
 (ove n_r = numero di legami singoli attorno ai quali si possono avere rotazioni di gruppi di più atomi);
- gradi di libertà dovuti alla vibrazione di ciascun legame nella direzione del proprio asse: $\sum q_i$;
 ($\sum q_i$ = numero di legami contenuti nella molecola);
gradi di libertà dovuti alle vibrazioni degli angoli di valenza: \(3n - 6 - \sum q_i\).

Si osserva che ciascuno di questi gradi di libertà è connesso ad uno dei moti presi in considerazione per scindere l'energia interna della molecola nelle sue componenti.

In accordo con la teoria cinetica dei gas, si ammette che ciascuno dei gradi di libertà corrispondente al moto d'assieme traslatorio o rotatorio della molecola, contribuisca per \(\frac{1}{2}R\) al valore di \(c'_v\).

Lo stesso contributo di \(\frac{1}{2}R\) è attribuito a ciascun grado di libertà \(n'_r\) corrispondente alla rotazione di ciascun gruppo di atomi contenuto nella molecola rispetto al resto della molecola. (Questa assunzione è lecita solo per temperature superiori a 250-300 °K, in quanto a temperature inferiori i moti rotazionali interni non si possono più ritenere liberi). Ad es. per l'etano \((\text{CH}_3-\text{CH}_3): n'_r = 1\); per l'alcol etilico \((\text{H}_2\text{C}-\text{CH}_2\text{OH}): n'_r = 1\); in quest'ultimo caso la rotazione del gruppo \(-\text{OH}\) attorno al legame \(\text{C}-\text{O}\) non va considerata, poiché in questo moto rotatorio solo l'atomo di idrogeno, e non un gruppo di atomi, ruota effettivamente attorno all'asse \(\text{C}-\text{O}\).

Il contributo di ciascun grado di libertà, corrispondente agli altri moti, è inferiore a \(R\) ed è funzione della temperatura.

Sulla base di queste considerazioni e facendo l'ipotesi che i contributi al valore di \(c'_v\) di ciascun grado di libertà siano additivi e tra loro indipendenti, si possono scrivere le seguenti relazioni (equazioni di Bennewitz e Rossner (6), motivate da Dobratz (18)).

\[
(32, \text{II})
\]

\[
c'_v = \frac{3R}{2} + \frac{3R}{2} + n'_r \cdot \frac{R}{2} + \sum q_i c_{r_i} + \left(\frac{3n - 6 - n'_r - \sum q_i}{\sum q_i}\right) \sum q_i c_{a_i};
\]
e:

\[
(33, \text{II})
\]

\[
c'_p = 4R + n'_r \cdot \frac{R}{2} + \sum q_i c_{r_i} + \left(\frac{3n - 6 - n'_r - \sum q_i}{\sum q_i}\right) \sum q_i c_{a_i};
\]

ove:

- \(n = N^o\) totale di atomi nella molecola;
- \(n'_r = N^o\) di legami semplici attorno ai quali si può avere rotazione di un gruppo di atomi rispetto ad un altro; in pratica \(n'_r\) è uguale alla somma dei legami \(\text{C}-\text{C}\) e dei legami \(\text{C}-\text{O}\) (negli eteri e negli esteri) presenti nella molecola.
- \(\sum q_i = \) numero di legami contenuti nella molecola;
- \(c_{r_i} = \) contributo al calore specifico dovuto alla vibrazione del legame \(\langle i \rangle\) nella direzione del proprio asse;
\(c_{\delta_i} \) = contributo al calore specifico dovuto alla vibrazione del legame \(i \) nella direzione normale rispetto al proprio asse.

I termini \(c_{\gamma_i} \) e \(c_{\delta_i} \) si calcolano con la funzione di EINSTEIN:
\[
R(X^2) \frac{(\exp X)}{((\exp X - 1)^2}
\]
ove \(X = \frac{h \nu}{k T} = \frac{h C}{\lambda k T} = \frac{h \omega C}{k T} \) (h = costante di Plank; k = costante di Boltzman; \(\nu \) = frequenza caratteristica di vibrazione; \(C \) = velocità della luce; \(\gamma \) = lunghezza d'onda; \(\omega = 1/\gamma \) = numero d'onda).

Ai contributi \(c_{\gamma_i} \) e \(c_{\delta_i} \) si possono assegnare valori dipendenti in prima approssimazione solo dalla natura del legame corrispondente. In effetti, si osserva da dati spettroscopici che ciascun tipo di legame possiede due frequenze fondamentali caratteristiche di vibrazione: la prima relativa alla vibrazione lungo la direzione del legame, l'altra relativa alla vibrazione in senso normale al legame. In prima approssimazione, queste frequenze si possono ritenere indipendenti dalla natura della molecola in cui il legame considerato è contenuto.

I valori delle frequenze di vibrazione rispettivamente assiale e normale all'asse del legame: \(\omega_\gamma \) e \(\omega_\delta \), per alcuni legami, sono riportati nella tabella (24, II).

Tabella (24, II) - Frequenze (\(\omega_\gamma \) e \(\omega_\delta \)) di vibrazione di alcuni legami in composti gassosi (espressi in numeri d'onda) (cm\(^{-1}\)) (da STULL e MAYFIELD [88] GAMBILL [27] e RAO [76 bis]).

<table>
<thead>
<tr>
<th>Legame</th>
<th>(\omega_\gamma)</th>
<th>(\omega_\delta)</th>
<th>Legame</th>
<th>(\omega_\gamma)</th>
<th>(\omega_\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C—H (alifatico)</td>
<td>2914</td>
<td>1247</td>
<td>C=S</td>
<td>1050</td>
<td>530</td>
</tr>
<tr>
<td>C—C (alifatico)</td>
<td>989</td>
<td>390</td>
<td>S—S</td>
<td>500</td>
<td>260</td>
</tr>
<tr>
<td>C=C (alifatico)</td>
<td>1618</td>
<td>599</td>
<td>S—H</td>
<td>2570</td>
<td>1050</td>
</tr>
<tr>
<td>simmetrico</td>
<td></td>
<td></td>
<td>C—N</td>
<td>990</td>
<td>390</td>
</tr>
<tr>
<td>C=C (alifatico)</td>
<td>1664</td>
<td>421</td>
<td>C=N</td>
<td>1620</td>
<td>845</td>
</tr>
<tr>
<td>asimmetrico</td>
<td></td>
<td></td>
<td>N—N</td>
<td>990</td>
<td>390</td>
</tr>
<tr>
<td>C≡C</td>
<td>2215</td>
<td>333</td>
<td>N—H</td>
<td>2920</td>
<td>1320</td>
</tr>
<tr>
<td>C—H (aromatico)</td>
<td>3045</td>
<td>1318</td>
<td>N—O</td>
<td>1030</td>
<td>205</td>
</tr>
<tr>
<td>C—C (aromatico)</td>
<td>989</td>
<td>390</td>
<td>N=O</td>
<td>1700</td>
<td>390</td>
</tr>
<tr>
<td>C≡C (aromatico)</td>
<td>1618</td>
<td>844</td>
<td>C=O</td>
<td>1030</td>
<td>205</td>
</tr>
<tr>
<td>C—I</td>
<td>500</td>
<td>260</td>
<td>C=O</td>
<td>1700</td>
<td>390</td>
</tr>
<tr>
<td>C—Br</td>
<td>560</td>
<td>280</td>
<td>O—H</td>
<td>3420</td>
<td>1150</td>
</tr>
<tr>
<td>C—Cl</td>
<td>650</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C—F</td>
<td>1050</td>
<td>530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C—S</td>
<td>650</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A ciascun valore \(\omega/T \) (ove T è espresso in °K) può essere assegnato un dato valore del contributo al calore molare calcolato con la funzione di EINSTEIN. Questi valori sono riportati nella tabella (25, II).
Tabella (25, II) - Contributo c (in cal/mole °K) al calore molare, dovuto ai fenomeni vibrazionali dei legami (da Taylor e Glasstone [97]).

<table>
<thead>
<tr>
<th>ω/T</th>
<th>c</th>
<th>ω/T</th>
<th>c</th>
<th>ω/T</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>1,9834</td>
<td>0,95</td>
<td>1,7045</td>
<td>2,40</td>
<td>0,8000</td>
</tr>
<tr>
<td>0,12</td>
<td>1,9819</td>
<td>1,00</td>
<td>1,6770</td>
<td>2,50</td>
<td>0,7453</td>
</tr>
<tr>
<td>0,14</td>
<td>1,9801</td>
<td>1,05</td>
<td>1,6487</td>
<td>2,60</td>
<td>0,6928</td>
</tr>
<tr>
<td>0,16</td>
<td>1,9780</td>
<td>1,10</td>
<td>1,6196</td>
<td>2,70</td>
<td>0,6429</td>
</tr>
<tr>
<td>0,18</td>
<td>1,9756</td>
<td>1,15</td>
<td>1,5897</td>
<td>2,80</td>
<td>0,5953</td>
</tr>
<tr>
<td>0,20</td>
<td>1,9731</td>
<td>1,20</td>
<td>1,5592</td>
<td>2,90</td>
<td>0,5502</td>
</tr>
<tr>
<td>0,22</td>
<td>1,9703</td>
<td>1,25</td>
<td>1,5281</td>
<td>3,00</td>
<td>0,5080</td>
</tr>
<tr>
<td>0,24</td>
<td>1,9671</td>
<td>1,30</td>
<td>1,4966</td>
<td>3,10</td>
<td>0,4680</td>
</tr>
<tr>
<td>0,26</td>
<td>1,9638</td>
<td>1,35</td>
<td>1,4646</td>
<td>3,20</td>
<td>0,4305</td>
</tr>
<tr>
<td>0,28</td>
<td>1,9601</td>
<td>1,40</td>
<td>1,4324</td>
<td>3,40</td>
<td>0,3627</td>
</tr>
<tr>
<td>0,30</td>
<td>1,9563</td>
<td>1,45</td>
<td>1,3999</td>
<td>3,50</td>
<td>0,3323</td>
</tr>
<tr>
<td>0,32</td>
<td>1,9521</td>
<td>1,50</td>
<td>1,3671</td>
<td>3,75</td>
<td>0,2651</td>
</tr>
<tr>
<td>0,34</td>
<td>1,9478</td>
<td>1,55</td>
<td>1,3340</td>
<td>4,00</td>
<td>0,2099</td>
</tr>
<tr>
<td>0,36</td>
<td>1,9430</td>
<td>1,60</td>
<td>1,3010</td>
<td>4,50</td>
<td>0,1286</td>
</tr>
<tr>
<td>0,40</td>
<td>1,9330</td>
<td>1,65</td>
<td>1,2680</td>
<td>5,00</td>
<td>0,0775</td>
</tr>
<tr>
<td>0,45</td>
<td>1,9188</td>
<td>1,70</td>
<td>1,2349</td>
<td>5,50</td>
<td>0,0454</td>
</tr>
<tr>
<td>0,50</td>
<td>1,9033</td>
<td>1,75</td>
<td>1,2018</td>
<td>6,00</td>
<td>0,0265</td>
</tr>
<tr>
<td>0,55</td>
<td>1,8863</td>
<td>1,80</td>
<td>1,1690</td>
<td>6,50</td>
<td>0,0151</td>
</tr>
<tr>
<td>0,60</td>
<td>1,8680</td>
<td>1,85</td>
<td>1,1363</td>
<td>7,00</td>
<td>0,00852</td>
</tr>
<tr>
<td>0,65</td>
<td>1,8481</td>
<td>1,90</td>
<td>1,1038</td>
<td>7,50</td>
<td>0,00474</td>
</tr>
<tr>
<td>0,70</td>
<td>1,8272</td>
<td>1,95</td>
<td>1,0716</td>
<td>8,00</td>
<td>0,00265</td>
</tr>
<tr>
<td>0,75</td>
<td>1,8047</td>
<td>2,00</td>
<td>1,0398</td>
<td>8,50</td>
<td>0,00145</td>
</tr>
<tr>
<td>0,80</td>
<td>1,7813</td>
<td>2,10</td>
<td>0,9772</td>
<td>9,00</td>
<td>0,000792</td>
</tr>
<tr>
<td>0,85</td>
<td>1,7568</td>
<td>2,20</td>
<td>0,9161</td>
<td>9,50</td>
<td>0,000431</td>
</tr>
<tr>
<td>0,90</td>
<td>1,7312</td>
<td>2,30</td>
<td>0,8570</td>
<td>10,00</td>
<td>0,000232</td>
</tr>
</tbody>
</table>

Dai dati riportati nella tabella (25, II) si osserva che il contributo per ciascun grado di libertà relativo ai moti vibrazionali tende a R per $\omega/T \to 0$. Tale valore limite è uguale a R (e non a $\frac{1}{2} R$ come per i gradi di libertà relativi ad es. alla traslazione e alla rotazione) in quanto il contributo al calore molare dovuto ai moti vibrazionali è somma di due termini, uno connesso all'energia cinetica del moto vibratorio e l'altro all'energia potenziale di separazione dei gruppi uniti dal le-
game considerato. Si può inoltre osservare che alle alte temperature il principio di equipartizione dell'energia tende ad essere verificato per tutti i gradi di libertà. Pertanto, per una molecola non lineare, il valore massimo del calore specifico (finché rimane trascurabile il contributo al \(c_p \) dovuto all'energia di tipo elettronico) è uguale a:

\[
(34, \ II) \quad c_{p,\max}^\circ = 4R + \left(3n - 6 - \frac{n'_t}{2} \right)R
\]

per una molecola biatomica (i gradi di libertà dovuti alla rotazione esterna sono due e \(n'_t = 0 \)):

\[
(25, \ II) \quad c_{p,\max}^\circ = \frac{9}{2}R.
\]

Per quanto riguarda i limiti di applicabilità del metodo di calcolo sopra riportato, osserveremo che esso non consente di valutare differenze di calori specifici tra isomeri. Il metodo non può inoltre essere applicato a composti (ad es. ciclobutene, ciclopropano) nei quali gli angoli di valenza sono molto diversi dai valori normali. Inoltre, i contributi dovuti ai fenomeni vibrazionali al valore dei calori molarici dei composti naftenici, sono ritenuti uguali a quelli relativi ai composti aromatici.

L'intervallo di temperatura per il quale il metodo può essere applicato è 250 \(\div \) 1100 °K. Il limite superiore è dovuto al fatto che al disopra di tale temperatura il contributo al valore dell'energia della molecola, dovuto alla componente elettronica, non è più, in generale, trascurabile e dipende dalla temperatura; il limite inferiore è dovuto, come è già stato sopra ricordato, alla non applicabilità del principio della equipartizione dell'energia.

Gli errori che si commettono nel calcolo dei calori molarici dei composti organici allo stato gassoso, applicando i dati riportati in questo paragrafo, sono generalmente contenuti entro \(\pm 5\% \). Si calcolano ad es. i seguenti dati: per il propano a 700 °K: 34,08 cal/mole °K (valore sperim.: 34,20 cal/mole °K), per il metilciclopentano a 500 °K: 46,97 cal/mole °K (valore sperim.: 44,94 cal/mole °K), per il cis-butene-2 a 1000 °K: 46,77 cal/mole °K (valore sperim.: 46,15 cal/mole °K).

8. Calori molarici dei liquidi. — I calori molarici di liquidi allo stato puro sono riportati in letteratura nei testi citati nel paragrafo precedente. Tra i diversi metodi proposti per valutare il calore molare dei liquidi puri riporteremo quello di SAKIADIS e COATES [83] che consente di calcolare con buona approssimazione il \(c_p \) di molte sostanze organiche.

Altri metodi sono discussi o riportati da REID e SHERWOOD [77] e da GAMBILL [26].
L'impostazione del metodo di Sakiadis e Coates presenta analogie con quanto descritto nel paragrafo precedente per il calcolo del calore moleare dei gas.

I gradi di libertà relativi ai diversi tipi di moto di una molecola allo stato liquido sono gli stessi visti per le molecole allo stato gassoso; nel caso dei liquidi non si può però assumere che ciascun grado di libertà, corrispondente ad es. ai moti d'assieme della molecola, contribuisca per $\frac{1}{2} R$ al calore moleare della sostanza; ciò deriva dal fatto che vi è una sostanziale differenza tra il tipo di moto delle molecole rispettivamente allo stato liquido e allo stato gassoso. È stato osservato che, per quanto riguarda il calcolo dell'energia interna dei liquidi, la traslazione di ciascuna molecola può essere assimilata ad una oscillazione armonica attorno ad una posizione media; la rotazione esterna può essere invece assimilata ad un moto torsionale che può anch'esso essere trattato come un'oscillazione armonica avente una certa frequenza fondamentale; l'energia relativa a ciascuna di queste oscillazioni può essere scissa in due componenti, l'una corrispondente all'energia cinetica e l'altra all'energia potenziale; ciascuno di questi termini contribuisce praticamente per $\frac{1}{2} R$ al valore del c_V. Pertanto, il contributo al c_V relativo alla traslazione e alla rotazione esterna è uguale, per ciascuno di questi moti, a $3 R$ (anziché $3/2 R$ come nel caso dei gas).

Anche il contributo relativo alle rotazioni interne può essere ritenuto uguale ad R per ogni grado di libertà.

Tenute presenti queste osservazioni e quanto è stato visto per i gas, si perviene alla seguente equazione (equazione di Sakiadis e Coates [83]):

\[
(36, \Pi) \quad c_V = (6 + n') R + \sum_i q_i c_{n_i} + \frac{3n - 6 - n' - \sum_i q_i}{\sum_i q_i} (s) \sum_i q_i c_{\eta_i}
\]

ove i diversi termini hanno lo stesso significato visto per i gas, ossia:

- c_V = calore moleare a volume costante (cal/mole °K);
- n' = numero di legami attorno ai quali si può avere rotazione libera di un gruppo di atomi della molecola rispetto ad un altro gruppo (in pratica legami C—C o legami C—O negli eteri e negli esteri);
- $\sum q_i$ = numero di legami contenuti nella molecola;
- n = numero di atomi contenuti nella molecola;
- c_{n_i} e c_{η_i} = contributo al calore moleare dovuto rispettivamente ai moti vibrazionali assiali dei legami ed ai moti vibrazionali degli angoli di valenza (funzioni di Einstein);
- s = fattore il cui valore numerico dipende dal peso molecolare della molecola ed è indipendente dalla temperatura (fig. 1, II).
Il calcolo dei termini c_{ν} e c_{δ} si effettua come per i gas, noti i valori di ω_ν e ω_δ (tabella 26, II), con l’ausilio della tabella (25, II).

Tabella (26, II) - Frequenze fondamentali (ω_ν e ω_δ) di vibrazione di alcuni legami di composti liquidi (espresse in numeri d’onda: cm$^{-1}$) (da SARKADIS e COATES [83], HERZBERG [35] e RAO [76 bis]).

<table>
<thead>
<tr>
<th>Legame</th>
<th>ω_ν</th>
<th>ω_δ</th>
<th>Legame</th>
<th>ω_ν</th>
<th>ω_δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\equivC-H</td>
<td>2960</td>
<td>-</td>
<td>C-O</td>
<td>1030</td>
<td>205</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>1450</td>
<td>C=O</td>
<td>1700</td>
<td>390</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>1000</td>
<td>C-N</td>
<td>900</td>
<td>370</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>1450</td>
<td>C=N</td>
<td>1620</td>
<td>845</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>1000</td>
<td>C=S</td>
<td>650</td>
<td>330</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>1100</td>
<td>C=Cl</td>
<td>650</td>
<td>330</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>1100</td>
<td>C=Br</td>
<td>560</td>
<td>280</td>
</tr>
<tr>
<td>\equivC-H</td>
<td>-</td>
<td>700</td>
<td>C=I</td>
<td>500</td>
<td>260</td>
</tr>
<tr>
<td>C-C</td>
<td>900</td>
<td>370</td>
<td>O-H</td>
<td>3400</td>
<td>1150</td>
</tr>
<tr>
<td>C=O</td>
<td>1650</td>
<td>-</td>
<td>N-H</td>
<td>3350</td>
<td>1320</td>
</tr>
<tr>
<td>C=C</td>
<td>2050</td>
<td>-</td>
<td>N-O</td>
<td>1030</td>
<td>205</td>
</tr>
<tr>
<td>C=C</td>
<td>-</td>
<td>600</td>
<td>N=N</td>
<td>990</td>
<td>390</td>
</tr>
<tr>
<td>C=C</td>
<td>-</td>
<td>300</td>
<td>S-H</td>
<td>2570</td>
<td>1050</td>
</tr>
<tr>
<td>C=C</td>
<td>-</td>
<td>350</td>
<td>S-S</td>
<td>500</td>
<td>280</td>
</tr>
</tbody>
</table>
I valori del coefficiente \(s \) per diversi composti organici sono riportati in funzione del peso molecolare nella figura (I, II).

(Fig. 1, II) - Parametro \(s \) dell’equazione (36, II) in funzione del peso molecolare per alcuni liquidi. A, composti alifatici: idrocarburi, nafteni, eteri. B, composti aromatici: idrocarburi, alogenueri, esteri, chetoni. C, composti alifatici: acidi, alcoli, eteri. D, composti aromatici: alcoli, ammine, mercaptani (da Sakiadis e Coates (83)).

Il metodo di Sakiadis e Coates consente di valutare il calore molare a volume costante dei liquidi organici con una approssimazione generalmente contenuta entro ± 4%.

Il metodo è applicabile per temperature superiori a — 50 °C; non è applicabile nelle molecole piccole né in generale ai primi due termini di ciascuna serie organica.

In pratica, è molto più utile la conoscenza dei calori molarì dei liquidi a pressione costante anziché a volume costante. Purtroppo, il calcolo esatto di \(c_P \), noto \(c_V \), richiede la conoscenza di grandezze chimico-fisiche non sempre disponibili.

Tra i diversi metodi proposti per il calcolo approssimato di \(c_P \) noto \(c_V \), riportiamo quello di WADA [103], che, tra tutti, è quello di più immediata applicabilità.
Altri metodi sono riportati da Reid e Sherwood [77], da Sakiadis e Coates [83] e da Gambill [26]. Il metodo di Wada si basa sulla seguente equazione:

\[(37, \text{ II}) \quad c_P = c_P \left(\frac{\Gamma}{A} \right)^7;\]

ove \(\Gamma\) e \(A\) sono due parametri che possono essere calcolati, per somme di contributi, in base alla sola composizione chimica della molecola in esame, con l’ausilio dei dati riportati nella tabella (27, II).

Tabella (27, II) - Contributo di legami al valore dei parametri \(\Gamma\) e \(A\) dell’equazione (37, II)
(da Wada [103]).

<table>
<thead>
<tr>
<th>Legame</th>
<th>(\Gamma)</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–C</td>
<td>1,10</td>
<td>1,07</td>
</tr>
<tr>
<td>C–O</td>
<td>2,05</td>
<td>2,78</td>
</tr>
<tr>
<td>C–S</td>
<td>5,43</td>
<td>—</td>
</tr>
<tr>
<td>C–N</td>
<td>0,40</td>
<td>0,24</td>
</tr>
<tr>
<td>C–H</td>
<td>5,10</td>
<td>4,16</td>
</tr>
<tr>
<td>C–F</td>
<td>—</td>
<td>6,57</td>
</tr>
<tr>
<td>C–Cl</td>
<td>12,91</td>
<td>12,55</td>
</tr>
<tr>
<td>C–Br</td>
<td>15,54</td>
<td>15,33</td>
</tr>
<tr>
<td>C–I</td>
<td>19,65</td>
<td>—</td>
</tr>
<tr>
<td>O–H</td>
<td>4,64</td>
<td>5,07</td>
</tr>
<tr>
<td>N–H</td>
<td>5,57</td>
<td>5,00</td>
</tr>
<tr>
<td>C=C</td>
<td>5,08</td>
<td>6,36</td>
</tr>
<tr>
<td>C=O</td>
<td>9,93</td>
<td>9,08</td>
</tr>
<tr>
<td>C=S</td>
<td>16,83</td>
<td>—</td>
</tr>
<tr>
<td>C=N</td>
<td>7,60</td>
<td>—</td>
</tr>
<tr>
<td>N=O</td>
<td>8,17</td>
<td>8,28</td>
</tr>
<tr>
<td>C≡N</td>
<td>14,13</td>
<td>—</td>
</tr>
<tr>
<td>anello</td>
<td>4,80</td>
<td>0,43</td>
</tr>
</tbody>
</table>

Il valore numerico di tali parametri si può ritenere indipendente dalla temperatura.

I calori specifici \(c_P\) (in cal/g °C) di alcuni liquidi inorganici sono riportati nella tabella (28, II).

I calori specifici di altri liquidi inorganici sono riportati da Rossini e coll., [80], Landolt [50], Perry [75], sulle International critical tables [41], ecc.

I calori specifici di alcune soluzioni acquose di elettroliti sono riportati ad es. da Timmermans [99], Perry [75] e sullo Handbook of Chemistry and Physics [33] ecc.
Tabella (28, II) - Calori specifici di liquidi inorganici \(c_p \) (cal/g °C); \(a = \) coefficiente di temperatura dell’equazione; \(c_p = c_p^0 + a \ T \) (\(T \) in °C) (da Hougén, Watson e Ragatz [39] e letteratura ivi citata).

<table>
<thead>
<tr>
<th>Liquido</th>
<th>(T \ °C)</th>
<th>(c_p)</th>
<th>(c_p^0)</th>
<th>(a)</th>
<th>Intervallo di temperatura °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniaca</td>
<td>40</td>
<td>1,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1,098</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1,215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1,479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercurio</td>
<td>0</td>
<td>0,0335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0,0330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0,0329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0,0329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>0,0332</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido nitrico</td>
<td>25</td>
<td>0,417</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrato di sodio</td>
<td>350</td>
<td>0,430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido solforico</td>
<td>25</td>
<td>0,369</td>
<td>0,339</td>
<td>0,00038</td>
<td>10° (\div) 45 °C</td>
</tr>
<tr>
<td>Anidride solforosa</td>
<td>20</td>
<td>0,3130</td>
<td>0,318</td>
<td>0,00028</td>
<td>10° (\div) 140 °C</td>
</tr>
<tr>
<td>Acqua</td>
<td>0</td>
<td>1,008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1,006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1,061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1,155</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Calori atomici e calori molarì dei solidi. — I calori atomici o molarì ed i calori specifici di individui chimici o di sostanze — organiche ed inorganiche — allo stato solido sono riportati ad es. nei testi citati nei paragrafi precedenti [50, 80, 75, 33, 41].

Tra i metodi di valutazione che richiedono la sola conoscenza della formula chimica, si possono ricordare le note regole di Dulong e Petit e di Neuman e Kopp.

Secondo la regola (o legge) di Dulong e Petit, il calore atomico degli elementi allo stato solido cristallino dovrebbe essere uguale a 6,2 cal/g atomo °C. In pratica questo valore si riscontra a temperatura ambiente e a volume costante per gli elementi aventi peso atomico superiore a circa 40. Per gli elementi più leggeri, a temperatura ambiente, il \(c_V \) è inferiore, ma tende a 6,2 all’aumentare della temperatura.

Secondo la regola di Neumann e Kopp, il calore molare di un composto solido cristallino è approssimativamente uguale alla somma delle capacità termiche degli elementi che lo costituiscono. I dati da utilizzare per il calcolo del \(c_p \) dei solidi a 20 °C sono, per i diversi elementi: C, 1,8; H, 2,3; O,4,0; B, 2,7; Si, 3,8; F, 5,0; S e P, 5,4 e per tutti gli altri: 6,3.

Liquidi molto polari che diano luogo a fenomeni associativi a causa della formazione di legami idrogeno, avranno calori di vaporizzazione e temperature di ebollizione relativamente elevati e tensioni di vapore relativamente basse.

Ad esempio l’aqua bolle a 100 °C ed ha un calore latente di 9717 cal/mole, mentre l’etilene, pur avendo un peso molecolare superiore, bolle a — 103,8 ed ha, a questa temperatura, un calore latente uguale a 3237 cal/mole.

Si comprende anche come CO e N₂ che sono isoelettronici, che hanno lo stesso peso molecolare e che non danno luogo a fenomeni associativi, abbiano temperature di ebollizione T_{eb} (a $P = 1$ atm) e calori di vaporizzazione λ (a $P = 1$ atm) molto prossimi tra di loro ($T_{eb, CO} = — 191,5 ^\circ C$; $T_{eb, N_2} = — 195,8 ^\circ C$; $\lambda_{CO} = 1443$ cal/mole; $\lambda_{N_2} = 1333$ cal/mole.)

I calori latenti e le tensioni di vapore di molti liquidi sono riportati in letteratura (vedi ad es. DREISBACH [20], ROSSINI [81] [80], MAXWELL [60], TIMMERMANS [98], JORDAN [43] ecc.).

In mancanza di dati specifici, i calori latenti di vaporizzazione dei liquidi possono essere valutati con equazioni deducibili dall’equazione di CLAPEYRON:

\[\frac{dP_s}{dT} = \frac{(\partial H/\partial \xi)_{T,P}}{T(\partial V/\partial \xi)_{T,P}} = \frac{\Delta H_{\text{ev}}}{T \Delta V_{\text{ev}}} = \frac{\Delta H_{\text{ev}}}{T(v^p - v^l)} \]

ove:

- P_s = tensione di vapore;
- T = temperatura di saturazione ($^\circ$K);
- ΔH_{ev} = entalpia molare di vaporizzazione, uguale alla differenza tra l’entalpia del vapore saturo e quella del liquido;
- v^p e v^l = volume molare del vapore saturo e, rispettivamente, del liquido.

Si ponga (vedi eq. (2, IV)):

\[v^p = \frac{z^p R T}{P_s} \]

\[v^l = \frac{z^l R T}{P_s}. \]

Sostituendo nella (38, II) si ottiene, con ovvi passaggi:

\[\frac{d \ln P_s}{d (1/T)} = \frac{\Delta H_{\text{ev}}}{R(z^p - z^l)}. \]
Prima di integrare la (41, II) si deve osservare che ΔH_{ev} e $(z^v - z^l)$ sono funzioni della temperatura; ad esempio, in corrispondenza del punto critico queste due grandezze si annullano. Sperimentalmente si osserva però che per molti individui chimici, il rapporto $\Delta H_{ev}/(z^v - z^l)$ non si scosta molto, al variare della temperatura, da un suo valore medio.

Pertanto, integrando la (41, II), supponendo costante $\Delta H_{ev}/(z^v - z^l)$, tra $P = 1$ atm (a $P = 1$ atm: $T = T_{eb}$) e $P = P_c$ (ossia $T = T_c$) si ottiene la seguente relazione approssimata:

$$
(\Delta H_{ev})_{P=1} = \frac{RT_c T_{eb} (z_{eb}^v - z^l) ln P_c}{T_c - T_{eb}}.
$$

ove:

$T_{eb} = \text{temperatura di ebollizione a } P = 1 \text{ atm; }$

$(\Delta H_{ev})_{P=1} e z_{eb}^v = \text{rispettivamente entalpia di vaporizzazione e coefficiente di comprimibilità dei vapori a } T_{eb}.$

$T_c e P_c = \text{rispettivamente temperatura critica e pressione critica del liquido considerato.}$

In pratica: $z_{eb}^v - z^l \approx 1$ per cui la (42, II) diventa (vedi REID SHERWOOD [77] e letteratura ivi citata):

$$
(\Delta H_{ev})_{P=1} = \frac{RT_c T_{eb} ln P_c}{T_c - T_{eb}}.
$$

Questa equazione applicata per $T = T_{eb}$, consente di calcolare con buona approssimazione il calore latente di vaporizzazione di numerosi liquidi organici ed inorganici, nota la temperatura critica, la pressione critica e la temperatura di ebollizione a pressione atmosferica, del liquido considerato. Per molte sostanze, l’errore è contenuto entro $\pm 5\%$; per altre, come ad esempio l’etilene e il cicloesano, gli errori sono sensibilmente superiori. I valori delle costanti critiche di alcuni individui chimici sono riportati nella tabella (2, IV). L’enthalpia di vaporizzazione per temperature diverse da T_{eb} si può calcolare con la seguente equazione di WATSON [104], nota l’enthalpia di vaporizzazione ad una qualsiasi temperatura T_1.

$$
\Delta H_{ev} = \Delta H_{ev1} \left(\frac{1 - T_r}{1 - T_{r1}}\right)^{0.38}
$$

ove:

$\Delta H_{ev} e \Delta H_{ev1} = \text{entalpia di vaporizzazione rispettivamente alla temperatura } T e T_1;$

$T_c e T_{r1} = \text{rispettivamente } T/T_c e T_1/T_c.$

La (44, II) può essere modificata, combinandola con la (43, II). Si ottiene:

$$
\Delta H_{ev} = RT_{eb} \ln P_c \frac{(1 - T_r)^{0.38}}{(1 - T_{eb,r})^{1.38}}
$$

ove:

$T_{eb} = \text{temperatura di ebollizione a } P = 1 \text{ atm; }$

$(\Delta H_{ev})_{P=1} e z_{eb}^v = \text{rispettivamente entalpia di vaporizzazione e coefficiente di comprimibilità dei vapori a } T_{eb}.$

$T_c e P_c = \text{rispettivamente temperatura critica e pressione critica del liquido considerato.}$

In pratica: $z_{eb}^v - z^l \approx 1$ per cui la (42, II) diventa (vedi REID SHERWOOD [77] e letteratura ivi citata):

$$
(\Delta H_{ev})_{P=1} = \frac{RT_c T_{eb} ln P_c}{T_c - T_{eb}}.
$$

Questa equazione applicata per $T = T_{eb}$, consente di calcolare con buona approssimazione il calore latente di vaporizzazione di numerosi liquidi organici ed inorganici, nota la temperatura critica, la pressione critica e la temperatura di ebollizione a pressione atmosferica, del liquido considerato. Per molte sostanze, l’errore è contenuto entro $\pm 5\%$; per altre, come ad esempio l’etilene e il cicloesano, gli errori sono sensibilmente superiori. I valori delle costanti critiche di alcuni individui chimici sono riportati nella tabella (2, IV). L’enthalpia di vaporizzazione per temperature diverse da T_{eb} si può calcolare con la seguente equazione di WATSON [104], nota l’enthalpia di vaporizzazione ad una qualsiasi temperatura T_1.

$$
\Delta H_{ev} = \Delta H_{ev1} \left(\frac{1 - T_r}{1 - T_{r1}}\right)^{0.38}
$$

ove:

$\Delta H_{ev} e \Delta H_{ev1} = \text{entalpia di vaporizzazione rispettivamente alla temperatura } T e T_1;$

$T_c e T_{r1} = \text{rispettivamente } T/T_c e T_1/T_c.$

La (44, II) può essere modificata, combinandola con la (43, II). Si ottiene:

$$
\Delta H_{ev} = RT_{eb} \ln P_c \frac{(1 - T_r)^{0.38}}{(1 - T_{eb,r})^{1.38}}
$$
ove:

\[T_{eb,r} = T_{eb}/T_c. \]

La (44, II) e la (45, II) forniscono risultati soddisfacenti per numerose sostanze, per temperature inferiori a \((T_c - 10)°\text{K}\. \)

Per il calcolo approssimato dei calori latenti di vaporizzazione sono stati proposti diversi metodi oltre a quello riportato in questo paragrafo; per la loro descrizione si rimanda ad esempio a Reid e Sherwood [77].

Un'altra equazione, applicabile ai liquidi non ionici, è stata proposta recentemente da Yoshin e Owens [106]; essa consente di calcolare il \(\Delta H_{ev}^p\) di un dato liquido, a pressione atmosferica, noti il diametro della molecola libera, la temperatura di ebollizione a \(P = 1\) atm, ed i volumi moliari a \(P = 1\) atm della sostanza in esame allo stato di vapore e allo stato liquido.

11. Valutazione e correlazione delle tensioni di vapore dei liquidi puri. — Sono stati proposti diversi metodi per la valutazione e la correlazione approssimata della tensione di vapore di liquidi a partire da un numero limitato di dati [77] [15].

Ci limiteremo qui a riportare solo alcune correlazioni relativamente facili da applicare, e che forniscono in molti casi risultati soddisfacenti.

Si consideri l'equazione di Clausius-Clapeyron nella sua forma approssimata:

\[(46, \text{II})\]

\[
\frac{d \ln P_s}{dT} = \frac{\Delta H_{ev}}{RT^2}
\]

ove:

\(P_s = \) tensione di vapore;

\(\Delta H_{ev} = \) entalpia di vaporizzazione.

Se si assume \(\Delta H_{ev} = \) costante, l'integrazione della (46, II) fornisce:

\[(47, \text{II})\]

\[\ln P_s = -\frac{\Delta H_{ev}}{RT} + \text{costante}.\]

In base a questa equazione, il logaritmo della tensione di vapore di un liquido dovrebbe essere funzione lineare dell'inverso della temperatura assoluta. In pratica, per diverse sostanze, tale dipendenza è verificata con sufficiente approssimazione solo per intervalli di temperatura limitati e per pressioni non troppo elevate.

La tensione di vapore dei liquidi può invece essere vantaggiosamente rappresentata con equazioni del tipo:

\[(48, \text{II})\]

\[\log P_s = K - k \Phi(T).\]
In effetti, si è constatato che la funzione $\Phi(T)$ è la stessa per molte sostanze, mentre K assume praticamente lo stesso valore per tutte le sostanze appartenenti ad una stessa serie organica; il valore numerico di k dipende dalla sostanza considerata.

Da quanto sopra, deriva che, scegliendo opportunamente la scala delle temperature, è possibile costruire per le sostanze appartenenti ad una data serie organica, un diagramma (diagramma di Cox [14]) simile a quello della fig. (2, II) che è valido per le n-paraffine.

Tutte le rette di questo diagramma hanno un punto in comune.

La particolare scala delle temperature di tale diagramma, può essere determinata direttamente per via grafica, nota la funzione $P_s(T)$ (o un numero sufficiente di punti) per un componente della serie considerata od anche per un liquido qualunque (ad es. H_2O). Procedendo in tale modo non è necessario ricavare esplicitamente la funzione $\Phi(T)$.

Questo metodo consente di valutare tensioni di vapore con approssimazione di $\pm 5\%$ per molti composti.

Ricorderemo che secondo Callingaert e Davis [10] la funzione $\Phi(T)$ che compare nella (48, II) è uguale a $1/(T - \tau)$, con $\tau \approx 43^\circ\text{K}$, in particolare per composti non molto polari, aventi una temperatura di ebollizione maggiore di 250 $^\circ\text{K}$. Un'equazione simile era già stata proposta da Antoine [1].

Un altro caso particolare del metodo di Cox-Antoine si ottiene applicando la nota regola di Trouton.

Secondo tale regola, per un liquido puro all’ebollizione a pressione atmosferica, sussiste la seguente relazione:

$$\Delta S_{sv} = \frac{\Delta H_{sv}}{T_{eb}} \approx 21 \text{kcal}/^\circ\text{K mole}$$

ove:

- ΔS_{sv}, ΔH_{sv} = rispettivamente entropia ed entalpia di vaporizzazione
- T_{eb} = temperatura di ebollizione a $P = 1$ atm.

Sostituendo la (49, II) nell’equazione di Clausius-Clapeyron espressa nella forma approssimata:

$$\ln P_s = \frac{\Delta H_{sv}}{R} \left(\frac{1}{T_{eb}} - \frac{1}{T} \right),$$

si ottiene, passando ai logaritmi decimali:

$$\log P_s = 4,6 \left(1 - \frac{T_{eb}}{T} \right),$$
equazione simile alla (48, II).
Fig. (2, II) - Diagramma di Cox per le n-paraffine.
La regola di Trouton — e quindi la (51, II) — è applicabile a liquidi non associati con T_{eb} non molto alta e con peso molecolare intorno a 100.

Recentemente, Miller [64] ha proposto la seguente equazione per la valutazione delle tensioni di vapore di liquidi:

\[(52, \text{II}) \quad \log P_{s,r} = \frac{-G}{T_r} \left[1 - T_r^2 + k(1 - T_r)^2 \right] \]

ove:
- $P_{s,r} = P_s/P_c$;
- $T_r = T/T_c$;
- $P_c, T_c =$ rispettivamente pressione e temperatura critica della sostanza.

Per pressioni comprese tra 10 e 1500 mm Hg, G si calcola con l’equazione:

\[(53, \text{II}) \quad G = 0,2471 + 0,19654 \, a; \]

per temperature comprese tra T_{eb} e T_c, si ottengono risultati più soddisfacenti con l’equazione:

\[(54, \text{II}) \quad G = 0,2271 + 0,19654 \, a. \]

Il parametro a che compare nella (53, II) e (54, II) si può calcolare con una delle seguenti relazioni:

\[(55, \text{II}) \quad a = \frac{T_{eb,r} \ln P_c}{1 - T_{eb,r}} \]

oppure, tenuto conto della (43, II):

\[(56, \text{II}) \quad a = \frac{(\Delta H_{ev})_{P=1}}{R T_c} \]

ove:
- $T_{eb,r} = T_{eb}/T_c$;
- $(\Delta H_{ev})_{P=1} =$ entalpia di vaporizzazione a $P = 1$ atm.

Il parametro k si calcola dalla (52, II) introducendovi, per le diverse grandezze, i valori corrispondenti a $P = 1$ atm.

Le equazioni di Miller forniscono risultati soddisfacenti ad esempio per molti composti organici che non danno luogo a fenomeni di associazione in fase vapore. Non sono applicabili a liquidi quali, alcolli, acidi carbossilici, sostanze associate come HF, o sostanze che si possono dissociare come N$_2$O$_4$.

Altri metodi per la valutazione e la correlazione delle tensioni di vapore dei liquidi sono riportati e discussi ad esempio da Reid e Sherwood [77].
CAPITOLO III

APPLICAZIONE DELLE ENTALPIE LIBERE DI FORMAZIONE (ΔG°)
E DELLE ENERGIE DI DISSOCIAZIONE DEI LEGAMICHI
ALLO STUDIO DI REAZIONI CHIMICHE

1. Calcolo della resa all'equilibrio termodinamico con l'ausilio dei ΔG°.
 Una prima importante applicazione dei ΔG° di formazione dei composti chimici allo studio dei processi chimici industriali, riguarda il calcolo della resa raggiungibile in una data reazione in condizioni di equilibrio termo-
dinamico.

Con resa globale nel prodotto R rispetto al reagente A, in un procedi-
mento che sfrutta la reazione:

(1, III) \[a\, A + b\, B + \ldots \rightarrow r\, R + s\, S + \ldots \]
si intende il rapporto:

(2, III) \[\eta^R_A = \frac{(q_R/M_R)a}{(q_A/M_A)r}; \]
ove:
\[q_R \] = peso di prodotto R ottenuto;
\[q_A \] = peso di reagente A impiegato;
\[M_R, M_A \] = peso molecolare rispettivamente di R e di A.

Riferendoci invece alla somma delle sostanze A e B si ha:

(3, III) \[\eta^R_{(A+B)} = \frac{(q_R/M_R)\, (a + b)}{(q_A/M_A + q_B/M_B)r}; \]
e, in generale:

(4, III) \[\eta^R_{(A+B)} = \frac{(q_R/M_R + q_s/M_s)\, (a + b)}{(q_A/M_A + q_s/M_R)\, (r + s)}. \]
Nel caso di reazioni nelle quali è ignoto o indefinito il peso molecolare della sostanza prodotta (ad es. produzione di gomma sintetica, di alti polimeri vinilici, ecc.), il rendimento si riferisce non alle moli, ma al peso di sostanze utili prodotte rispetto a quelle teoricamente ottenibili se la reazione decorresse in modo quantitativo.

In altra parte del corso verranno discussi i criteri che si devono seguire per ottenere, in un dato processo, la resa globale più conveniente in uno o più prodotti, rispetto ad una o più sostanze di partenza. In questo paragrafo ci limiteremo a riferire sul calcolo della resa raggiungibile in condizioni di equilibrio termodinamico.

Consideriamo un sistema, mantenuto a temperatura costante, sede di una reazione chimica, e supponiamo di poter misurare la sua composizione in funzione del tempo. Nel caso che il sistema non contenga inizialmente nessun prodotto di reazione, si otterrà una curva simile alla curva I della fig. (1, III). All’aumentare della durata della reazione, il sistema si sposta verso le sue condizioni di equilibrio che raggiunge dopo un certo tempo (teoricamente infinito).

![Diagram](image)

Fig. (1, III) - Andamento in funzione del tempo della composizione di un sistema, sede di una reazione chimica, a seconda della composizione iniziale.

Se il sistema contiene inizialmente una percentuale di prodotto di reazione superiore a quella che si ha in condizioni di equilibrio, si ottiene una curva simile alla II. (1)

Da un punto di vista teorico, nessuna reazione avviene in modo totale, ossia sino alla completa scomparsa della sostanza di partenza, ma si arresta quando si è raggiunto l’equilibrio termodinamico.

Nelle condizioni di equilibrio, tutte le sostanze, sia quelle di partenza, sia quelle prodotte nella reazione, sono presenti in quantità più o meno grande.

Qualora si parta da un sistema non contenente i prodotti di reazione, la resa che si ottiene quando la reazione considerata raggiunge lo stato di equilibrio termodinamico è quindi la resa massima ottenibile quando la reazione stessa si

(1) Le composizioni iniziali si sono supposte tali da dare luogo alla stessa composizione di equilibrio nei due casi.
effettui in una sola operazione, senza allontanare dal sistema nessuno dei prodotti di reazione e senza effettuare ricidi.

La conoscenza della resa raggiungibile all’equilibrio termodinamico in una data reazione, e della variazione di tale resa al variare delle condizioni operative, è molto importante, non solo per esaminare se la reazione può essere realizzata o meno su scala industriale, ma anche, come viene riferito più avanti, per indicare alcuni dei criteri da seguire nella condotta della reazione stessa su scala industriale.

La posizione dell’equilibrio dipende evidentemente dal tipo di reazione e dalle condizioni in cui questa viene condotta.

In generale, le reazioni che sono accompagnate da un elevatissimo sviluppo di calore, o dalla scomparsa di una delle fasi inizialmente presenti, avvengono praticamente in modo completo, mentre ciò non si verifica per molte reazioni omogenee.

Se facciamo ad es. reagire ad alta temperatura il carbonio con vapore acqueo, tra le altre, possono aver luogo le seguenti reazioni:

\[
\begin{align*}
(5, \; \text{III}) & \quad C + H_2O \rightarrow CO + H_2; \\
(6, \; \text{III}) & \quad CO + H_2O \rightleftharpoons CO_2 + H_2.
\end{align*}
\]

La prima reazione può decorrere in modo praticamente completo, ossia fino alla scomparsa della fase solida, ed il rendimento rispetto al carbonio: \(\eta_{C}^{(CO + CO_2)}\) può risultare in tal caso praticamente uguale a 1; non così per la reazione (6, III), che ha luogo in fase omogenea, per la quale il rendimento in H₂ rispetto all’H₂O: \(\eta_{H_2O}^{H_2}\), è sempre minore di 1; a reazione ultimata, sono sempre presenti, in quantità più o meno grandi, tutti i reagenti e i prodotti della reazione.

I criteri sopra citati hanno carattere puramente qualitativo, ma è ben noto che la resa termodinamica di un processo può essere calcolata, per lo meno in molti casi, in modo assai preciso.

Ad es., nota la costante di equilibrio di una reazione che avviene in fase omogenea tra composti gassosi a comportamento ideale, e nota la composizione del sistema di partenza, si giunge facilmente al calcolo della composizione del sistema all’equilibrio e quindi, con l’ausilio della (4, III), della resa all’equilibrio termodinamico.

Le costanti di equilibrio si calcolano con l’ausilio dei \(\Delta G^\circ\) di reazione, i quali sono ottenuti a loro volta dal \(\Delta G^\circ\) standard di formazione dei composti che prendono parte alla reazione. Si vedano a questo riguardo le equazioni (86, I) e (100, I).

Nel caso dei sistemi reali, per poter effettuare il calcolo della resa all’equilibrio termodinamico, si devono conoscere i coefficienti di fugacità (vedi ad es. la (90, I)) — oppure i coefficienti di attività (equazione (91, I)) — per ciascuna sostanza che prende parte alla reazione, nelle condizioni in cui si trova nel sistema.

Il calcolo di alcuni di questi coefficienti verrà trattato nel capitollo successivo.
2. Influenza degli errori sul ΔG^0, nella valutazione delle K di equilibrio e delle rese. — Poiché il ΔG^0 e la costante di equilibrio di una reazione sono legati tra loro da una relazione logaritmica, errori assoluti anche limitati sul ΔG^0 possono dare luogo ad errori relativi notevoli sulle K di equilibrio calcolate e quindi sulle rese prevedibili all’equilibrio.

Supponiamo ad esempio di conoscere il ΔG^0 con una approssimazione di 500 cal/mole e poniamo:

\begin{align*}
(7, \text{ III}) & \quad \Delta G^0 = \Delta G^{0'} + 500; \\
(8, \text{ III}) & \quad \Delta G^0 = -RT \ln K; \\
(9, \text{ III}) & \quad \Delta G^{0'} = -RT \ln K'; \\
\end{align*}

ove $\Delta G^{0'}$ e K' = valori errati rispettivamente di ΔG^0 e di K. Si avrà:

\begin{align*}
(10, \text{ III}) & \quad \Delta G^0 - \Delta G^{0'} = RT \ln \frac{K'}{K} = 500 \text{ cal/mole}; \\
\text{o ssia:} & \\
(11, \text{ III}) & \quad \ln \frac{K'}{K} = \frac{500}{RT} \approx \frac{250}{T}.
\end{align*}

Da questa relazione si calcola ad esempio:

- per $T = 300 ^\circ \text{K}$: $K' = 2,30 K$;
- per $T = 500 ^\circ \text{K}$: $K' = 1,65 K$.

L’influenza di tali errori sulla rea raggiungibile all’equilibrio termodinamico, dipende evidentemente dalla stoechiometria della reazione e dal valore numerico della K di equilibrio.

Si consideri ad esempio la reazione:

\begin{align*}
(12, \text{ III}) & \quad A \to B,
\end{align*}

la rea $x = \eta_A^B$ è legata alla costante di equilibrio K dalla relazione:

\begin{align*}
(13, \text{ III}) & \quad x = \frac{K}{(1 + K)}.
\end{align*}

Se K è molto maggiore di $1 (\Delta G^0 \ll 0)$, l’errore su x potrà essere trascurabile, ma, in tale caso, la reazione è tutta spostata verso destra e la rea è praticamente uguale a 1.

Se invece K è minore di $1 (\Delta G^0 > 0)$, l’errore relativo che si commette nel calcolo della rea può essere rilevante.

Si osserva quindi che lo stesso errore assoluto e relativo sul ΔG^0, può dare luogo ad errori relativi nel calcolo delle rese all’equilibrio, tra loro ben diversi a seconda che ΔG^0 sia positivo o negativo.
La conoscenza di ΔG° in funzione della temperatura consente di calcolare la resa all’equilibrio alle varie temperature; supposto di conoscere il ΔG° con una certa approssimazione, può essere interessante calcolare l’errore corrispondente che si commette nel calcolare la temperatura alla quale si otterrà una data resa.

Utilizzando la simbologia introdotta nelle equazioni (7, III) e (11, III), la relazione cercata tra le temperature T e T' affinché la resa (e quindi anche la costante di equilibrio) abbia il valore assegnato è:

\[(14, \text{III}) \quad \frac{\Delta G^{\circ'}_{T'}}{T'} = \frac{\Delta G^\circ}{T} = -R \ln K\]

ossia:

\[(15, \text{III}) \quad \Delta T = T' - T = T \left(\frac{\Delta G^{\circ'} - \Delta G^\circ}{\Delta G^\circ} \right) = \frac{\Delta (\Delta G^\circ)}{\Delta G^\circ} T,\]

ove $\Delta (\Delta G^\circ)$ = errore assoluto con il quale è noto ΔG°.

L’errore assoluto commesso nel calcolo della temperatura alla quale si ottiene una data resa è quindi proporzionale alla temperatura assoluta e all’errore relativo con il quale è noto il ΔG°.

3. Valutazione di temperature e di pressioni di reazioni dai ΔG° di reazione. — La conoscenza dei ΔG° di reazione in funzione della temperatura, consente in molti casi di trarre interessanti conclusioni sulle condizioni operative che devono essere attuate per realizzare su scala industriale una data reazione.

In quanto segue verranno riportati a questo riguardo alcuni esempi illustrativi di reazioni endotermiche ed esotermiche. Altri esempi verranno riportati nella parte del corso dedicata ai criteri per la condotta industriale delle reazioni.

a) Esempi di reazioni endotermiche

Il caso delle reazioni endotermiche è particolarmente interessante, in quanto molte di esse sono condotte ad una temperatura non molto diversa da quella per la quale si annulla il loro ΔG°.

Si consideri ad esempio la reazione:

\[(16, \text{III}) \quad \text{CH}_4 + \text{H}_2\text{O} \rightleftharpoons \text{CO} + 3 \text{H}_2, \quad \Delta H^\circ_{\text{700°C}} = 53790 \text{ cal/mole CH}_4\]

che è oggi una delle più importanti per la preparazione dei gas di sintesi.

A partire dai ΔG° di formazione di CO, \(\text{H}_2\text{O}\) e \(\text{CH}_4\) si calcola che il ΔG° della reazione tra 600 e 1500 °K, si può ottenere con buona approssimazione con la relazione:

\[(17, \text{III}) \quad \Delta G^\circ = +53717 - 60,25 T \text{(°K)} \text{ cal/mole CH}_4,\]
Da questa relazione si ricava che il ΔG^0 della (16, III) si annulla per $T \approx 900 \, ^\circ\text{K}$. A questa temperatura quindi, la costante di equilibrio della (16, III) è uguale ad uno e, supposto di partire da una miscela equimolecolare di CH_4 e H_2O e di operare ad una pressione assoluta di 1 atmosfera, la quantità di metano convertita all’equilibrio sarebbe uguale a circa 53%.

Si può notare che la reazione in esame è fortemente endotermica; pertanto, operando ad una temperatura anche di non molto superiore a 900 °K si possono ottenere rese all’equilibrio molto elevate. Si deve d’altra parte tener presente che la temperatura non può essere portata a valori troppo elevati, data la convenienza – in questo caso – di fornire il calore di reazione per trasmissione attraverso una parete.

In pratica, per aumentare la resa rispetto al CH_4, si opera a circa 700 °C e con un eccesso di vapore, dato il costo relativamente basso di questo reagente.

In queste condizioni, per poter avvenire con velocità elevate e per non dar luogo a formazione di nero fumo, proveniente dal cracking del metano, la reazione deve essere catalizzata (con catalizzatori al Ni).

Per quanto riguarda la pressione di esercizio, le sole considerazioni termodinamiche suggerirebbero di operare sotto vuoto (prescindendo dalla pericolosità) poiché la reazione avviene con aumento del numero di moli (allo stato gassoso). Si deve però tener presente che i gas di sintesi vengono poi utilizzati sotto pressione; quindi, poiché nella reazione (16, III) vi è raddoppio del numero di moli, comprimere i gas prima della reazione comporta un sensibile risparmio di energia. Si deve anche tener conto del fatto che il metano ed il vapore sono generalmente disponibili sotto pressione. Per queste ragioni, negli impianti più moderni che sfruttano la (16, III), si opera sotto pressione, a poche decine di atmosfere.

Una serie di altri esempi molto interessanti è costituita da reazioni industriali di deidrogenazione di idrocarburi, come ad esempio le seguenti:

(18, III) $2 \text{CH}_4 \rightleftharpoons \text{C}_2\text{H}_4 + 3 \text{H}_2; \quad \Delta H^0_{1500^\circ\text{C}} \approx + 97,000 \text{ cal/mole C}_2\text{H}_2$

(19, III) $\text{C}_6\text{H}_6 \rightleftharpoons \text{C}_2\text{H}_4 + \text{H}_2; \quad \Delta H^0_{500^\circ\text{C}} = + 35500 \text{ cal/mole}$

(20, III) α-$\text{C}_4\text{H}_8 \rightleftharpoons \text{CH}_2=\text{CHCH}=\text{CH}_2 + \text{H}_2; \quad \Delta H^0_{650^\circ\text{C}} = + 31000 \text{ cal/mole}$

(21, III) $\text{H}_2\text{C} = \text{C} = \text{CH}_{\text{H}_2} \rightleftharpoons \text{H}_2\text{C} = \text{C} = \text{CH}_{\text{H}_2} + 3 \text{H}_2; \quad \Delta H^0_{500^\circ\text{C}} \approx + 53000 \text{ cal/mole C}_6\text{H}_6$

Tutte queste reazioni sono endotermiche. Utilizzando ad esempio i dati di Van Krevelen e Chermin, riportati nel capitolo precedente, si calcolano i seguenti ΔG^0 di formazione (espressi in kcal/kmol) per T compreso tra 600 e 1500 °K (2):

(2) Quest’indagine termodinamica potrebbe ugualmente essere fatta con l’ausilio del diagramma di Francis che verrà illustrato nel prossimo paragrafo.
\[\Delta G^\circ_{\text{CH}_2} \cong -21160 + 25,87\ T; \quad \Delta G^\circ_{\text{C}_2\text{H}_6} \cong + 53356 - 15,46\ T; \]

\[\Delta G^\circ_{\text{C}_2\text{H}_4} \cong -24588 + 50,93\ T; \quad \Delta G^\circ_{\text{C}_2\text{H}_4} \cong + 9451 + 18,89\ T; \]

\[\Delta G^\circ_{\text{C}_2\text{H}_2\text{N}_2} \cong -4793 + 67,54\ T; \quad \Delta G^\circ_{\text{C}_2\text{H}_4} \cong + 23032 + 39,40\ T; \]

\[\Delta G^\circ_{\text{C}_2\text{H}_6} \cong -36623 + 138,76\ T; \quad \Delta G^\circ_{\text{C}_2\text{H}_4} \cong + 15216 + 47,18\ T. \]

Da questi dati si ottengono i seguenti \(\Delta G^\circ \) di reazione che si annullano per i valori di \(T \) sotto indicati:

\[\Delta G^\circ_{(18,111)} \cong + 95676 - 67,20\ T; \quad \Delta G^\circ = 0 \quad \text{a} \quad T \cong 1440\ ^\circ\text{K}; \]

\[\Delta G^\circ_{(19,111)} \cong + 34039 - 32,04\ T; \quad \Delta G^\circ = 0 \quad \text{a} \quad T \cong 1060\ ^\circ\text{K}; \]

\[\Delta G^\circ_{(20,111)} \cong + 27825 - 28,14\ T; \quad \Delta G^\circ = 0 \quad \text{a} \quad T \cong 990\ ^\circ\text{K}; \]

\[\Delta G^\circ_{(21,111)} \cong + 51839 - 91,58\ T; \quad \Delta G^\circ = 0 \quad \text{a} \quad T \cong 565\ ^\circ\text{K}. \]

La conoscenza della temperatura alla quale si annulla il \(\Delta G^\circ \) di reazione è molto utile, perché a questa temperatura si ha \(K_{eq} = 1 \) e, di conseguenza, la resa all’equilibrio termodinamico della reazione considerata può facilmente raggirare valori che in certi casi possono essere ritenuti soddisfacenti, ad esempio superiori al 50%.

Si può notare che alla temperatura per la quale \(K_{eq} = 1 \), i sistemi contenenti i reagenti ed i prodotti della singola reazione, ciascuno a fugacità unitaria, sono all’equilibrio termodinamico (rispetto alla reazione considerata). In questo caso, per ogni esempio sopra riportato, la percentuale di prodotto utile presente nel sistema all’equilibrio rispetto alla reazione considerata è uguale al 33,33\% (supposto, come è lecito, che i gas abbiano comportamento ideale).

Si può per altro calcolare che per la reazione di formazione dell’acetilene da metano, la resa massima in acetilene raggiungibile operando a 1440 \(^\circ\text{K} \) e a \(P = 1 \) atm è uguale a 66\%. Operando alla stessa pressione, ma ad una temperatura di 1400 \(^\circ\text{K} \) la resa massima sarebbe invece uguale solo a 26\%. Questa variazione così marcata nella resa, per una variazione di temperatura relativamente piccola, è dovuta al fatto che il valore assoluto del \(\Delta H^\circ \) della reazione considerata è elevato.

Per le reazioni di deidrogenazione dell’etano e del butene, la resa massima raggiungibile, operando a \(P = 1 \) atm e alla temperatura per la quale \(\Delta G^\circ = 0 \), risulta uguale a \(\sqrt{0,5} = 70,7\% \).

Per la reazione di deidrogenazione del cicloesano a benzene la resa massima, sempre operando nelle stesse condizioni, è invece uguale a 75\%.

Questi dati mostrano che per dar luogo a rese soddisfacenti in un solo passaggio, le reazioni endotermiche sopra considerate debbono essere condotte ad una temperatura generalmente uguale o superiore - o tutt’al più solo di poco inferiore - alla temperatura alla quale \(\Delta G^\circ = 0 \).

In pratica, la temperatura alla quale si opera è condizionata da altri fattori,
oltre a quelli termodinamici; questi fattori possono essere i mezzi disponibili per fornire il calore di reazione, la resistenza dei materiali, la stabilità dei prodotti e degli eventuali catalizzatori.

Ad esempio, nel caso della reazione di formazione dell'acetilene da metano, il calore necessario alla reazione, dato in particolare l'elevato valore della temperatura minima alla quale si deve operare, può difficilmente essere fornito mediante scambio attraverso una parete. In pratica si può utilizzare un arco elettrico — come si faceva ad esempio a Hül's in Germania ancora prima della guerra nei primi impianti di questo genere [30, 46] — oppure si può bruciare una parte del metano inviando nel reattore una miscela di metano e ossigeno in difetto — come nel processo autotermico Sachsse [3, 46, 82], oppure l'idrocarburo può essere inviato su una massa di refrattario preriscaldata come nel processo Wulff [8, 46]. In tutti questi casi il calore necessario alla reazione è fornito all'interno del reattore e la temperatura può raggiungere valori superiori a 1440 K (ad es. 1500 °C). A questa temperatura non è necessario l'impiego di catalizzatori. In processi moderni tutti'ora allo studio, che utilizzano archi al plasma, la temperatura può raggiungere valori molto più elevati [25]. Recentemente [72 bis] è stato anche proposto di effettuare la reazione (18, III) in reattori di grafite riscaldati elettricamente dall'esterno.

Nei processi industriali di preparazione dell'etilene da etano si opera generalmente in reattori tubolari ed il calore di reazione è fornito mediante scambio attraverso una parete. Per questa ragione la temperatura non può essere molto elevata; si opera a 800 °C e questo valore è sufficientemente elevato da consentire di condurre la reazione in assenza di catalizzatore.

Nel caso delle produzioni del butadiene da α-buteni, in particolare per limitare la formazione di prodotti secondari e di prodotti di demolizione dei reagenti, si deve operare ad una temperatura (600-650 °C) inferiore di circa 120-70 °C a quella per la quale si annulla il Δ\text{G}^\circ della reazione; in questo caso, per aumentare la resa all'equilibrio, tenuto conto che la reazione considerata avviene con aumento del numero di molecole, si opera a pressione ridotta, o meglio in presenza di un diluente (vapore d'acqua) con conseguente diminuzione della pressione parziale di ciascun reagente. Il calore di reazione è fornito preriscallando a temperatura più alta il diluente (vapor acqueo), che è utilizzato in forte eccesso. Inoltre, è necessario catalizzare la reazione.

Nel caso della deidrogenazione dei nafteni a benzene (equazione (21, III)), si può invece operare senza inconvenienti a temperature superiori a quella per la quale Δ\text{G}^\circ = 0 (≈ 565 °K); in pratica si opera a circa 450-500 °C, temperatura alla quale la velocità di reazione è sufficientemente elevata, la resa all'equilibrio essendo anch'essa molto alta. Anche in questo caso, dato il valore relativamente basso della temperatura, la reazione deve essere catalizzata.

Le pressioni alle quali si fanno avvenire le reazioni sopra considerate, sono generalmente basse.
Un'indagine termodinamica più approfondita dei processi fin qui descritti consente di pervenire ad altre deduzioni, oltre a quelle relative alle temperature di reazione.

Si calcola ad esempio (vedi diagramma di Francis riportato nel paragrafo (4, III)) che sopra circa 1600 °K l'instabilità termodinamica dell'acetilene è inferiore a quelle di tutti gli altri idrocarburi; ciò spiega — almeno in parte — il fatto che, nei processi che sfruttano la (18, III), nei quali si opera a circa 1500 °C, la percentuale di idrocarburi che si ottengono accanto a C₂H₂ ed a CH₄ non convertito, è limitata.

Si può ancora notare (vedi diagramma di Francis) che, dal punto di vista termodinamico, sia la preparazione dell'acetilene che la preparazione dell'etilene presentano dei vantaggi se si parte da paraffine superiori anziché, rispettivamente, da metano e etano; in effetti, per le temperature che interessano le sintesi in questione, i ΔG° ed i ΔH° di reazione diminuiscono all'aumentare del numero di atomi di carbonio della paraffina di partenza (ad esempio supposta lineare).

![Diagramma di resa in funzione del tempo](image)

Fig. (2, III) - Andamento qualitativo della resa in funzione del tempo di reazione nei casi in cui il prodotto desiderato non è termodinamicamente stabile nelle condizioni in cui si conduce la reazione.

Gli esempi (18-21, III) riportati in questo paragrafo, si riferiscono tutti a casi in cui i prodotti di reazione sono termodinamicamente instabili, rispetto ai loro elementi costitutivi, nelle condizioni di temperatura alle quali vengono preparati. Se in questi processi si raggiungesse l'equilibrio termodinamico assoluto del sistema considerato volta per volta (per il calcolo del quale si deve tener conto delle reazioni di formazione di ogni idrocarburo dagli elementi), la resa all'equilibrio nel prodotto desiderato sarebbe irrisoria: in ogni caso si otterrebbe praticamente solo carbonio e idrogeno.

Per questi processi, l'andamento della resa in funzione del tempo di reazione è rappresentato qualitativamente nella fig. (2, III).
È ovvio che in questi casi, per ottenere rese soddisfacenti, è indispensabile regolare i tempi di reazione e, talvolta, operare in presenza di opportuni catalizzatori selettivi, in modo da evitare che i prodotti presenti si possano decomporre in reazioni secondarie.

Tenuto presente che le velocità di tutte le reazioni (desiderate e secondarie) aumentano con la temperatura, la necessità di regolare il tempo di contatto sarà tanto più sentita quanto più elevata sarà la temperatura di reazione. Ad esempio, nel caso della preparazione dell’acetilene da metano, il tempo di permanenza dei reagenti nella zona di reazione ad alta temperatura è dell’ordine dei millesimi di secondo e, all’uscita dei reattori, i prodotti sono bruscamente raffreddati da un getto di acqua allo scopo di congelare cinematicamente il sistema.

Questa considerazione mostra anche che in certi casi è possibile raggiungere rese, in un dato prodotto, superiori a quelle corrispondenti al raggiungimento dell’equilibrio termodinamico assoluto del sistema.

Un altro esempio interessante di processo endotermico riguarda la seguente reazione:

\[
\frac{1}{2} \text{N}_2 + \frac{1}{2} \text{O}_2 \rightleftharpoons \text{NO}; \quad \Delta H^\circ_{298\text{K}} = +21650 \text{ cal/mole NO}.
\]

per la quale:

\[
\Delta G^\circ = +21543 - 3,01 T (\text{°K}) \text{ cal/mole NO}.
\]

(per \(T\) compreso tra 600 e 1500 \text{°K}).

A 5000 \text{°K} il \(\Delta G^\circ\) di questa reazione è ancora alquanto positivo (6807 cal/mole -[81]). Ciò significa che solo operando a temperature molto alte è possibile ottenere, partendo da aria, gas contenenti percentuali di NO dell’ordine di qualche unità \%

Ad esempio, a 2000 °C, all’equilibrio termodinamico, si ottengono gas contenenti solo circa 1% di NO. Dato inoltre che la reazione avviene senza variazione del numero di moli, non si può operare sulla pressione per spostare l’equilibrio. Per queste ed altre ragioni, lo sfruttamento industriale della reazione (22, III) non presenta tuttora interesse pratico; in passato questa reazione fu realizzata in casi del tutto particolari, quando ad esempio si poteva disporre di energia elettrica a prezzo estremamente basso, non meglio utilizzabile.

L’ossido di azoto NO — dal quale si prepara l’acido nitrico — è perciò ottenuto industrialmente per ossidazione con aria dell’ammoniaca, malgrado il costo di quest’ultimo composto.

b) Esempi di reazioni esotermiche molto favorite

Tra le reazioni esotermiche il cui \(\Delta G^\circ\) è sempre negativo per qualunque temperatura che possa presentare interesse pratico, esamineremo in particolare quelle che forniscono prodotti termodinamicamente stabili nelle condizioni di reazione.
Si consideri ad esempio la reazione di sintesi dell’acido cloridrico dagli elementi:

$$\frac{1}{2} \text{H}_2 + \frac{1}{2} \text{Cl}_2 \rightarrow \text{HCl}; \quad \Delta H_{1500^\circ K}^o = -22700 \text{ cal/mole HCl},$$

per la quale si ha:

$$\Delta G_{\text{HCl}}^o = -22460 - 1,56 T \text{ (cal/mol)} \text{ per } 600 < T < 1500^\circ \text{K}.$$

Si tratta di una reazione esotermica, termodinamicamente molto favorita anche alle alte temperature, poiché il suo ΔG^o è sempre negativo. Poiché il prodotto della reazione è termodinamicamente stabile rispetto agli elementi e poiché non si hanno reazioni secondarie, la reazione potrà essere condotta ad alta temperatura. Se la reazione fosse condotta in modo adiabatico, la temperatura raggiungerebbe circa: $21000/7 = 3000^\circ \text{C}$. A questa temperatura l’acido cloridrico è in parte dissociato, ma si riassocia nel raffreddamento successivo; ad esempio sarà sufficiente che i gas escano dalla zona di reazione a 1000 $^\circ \text{C}$: a questa temperatura la costante di equilibrio della (23, III) è uguale a $1,45 \times 10^4$. Questa reazione verrà ulteriormente discussa nella parte del corso dedicata ai criteri per la realizzazione industriale delle reazioni, ove verrà tenuto conto anche dei diversi aspetti cinetici e tecnologici.

In altri casi, i reagenti utilizzati possono dar origine a diversi prodotti, oltre a quelli desiderati.

Ciò si verifica ad esempio nel processo di preparazione dei gas di sintesi (CO, H₂) a partire da metano e ossigeno.

In questo processo la reazione desiderata sarebbe:

$$\text{(24, III) } \text{CH}_4 + \frac{1}{2} \text{O}_2 \rightarrow \text{CO} + 2 \text{H}_2; \quad \Delta H_{1500^\circ K}^o = 5485 \text{ cal/mole CH}_4$$

Ma da CH₄ e O₂ si possono ottenere altri prodotti, quali ad esempio CO₂, H₂O, C, C₂H₂, CH₃OH ecc.

Si tratterà quindi di esaminare se e in quali condizioni i reagenti CH₄ e O₂ possono dar luogo ad un sistema la cui composizione, all’equilibrio termodinamico assoluto, corrisponda a rese sufficientemente elevate in CO e H₂ rispetto a CH₄ e O₂.

Si può anzitutto osservare che a temperatura sufficientemente elevata, i soli prodotti termodinamicamente stabili rispetto agli elementi, derivanti da CH₄ e O₂, sono CO, CO₂ e H₂O. Tenuto presente inoltre che, ad alta temperatura il metano si può decomporre a carbonio e idrogeno, e che una piccola percentuale di metano può esistere all’equilibrio assoluto (in particolare se si opera sotto pressione), per studiare il sistema considerato sarà sufficiente prendere in considerazione la seguente reazione globale:

$$\text{(25, III) } \text{CH}_4 + n\text{O}_2 \rightarrow a \text{CO} + b \text{H}_2 + c \text{CO}_2 + d \text{H}_2\text{O} + e \text{C} + f \text{CH}_4 + g \text{O}_2.$$
Inoltre è opportuno esaminare se la reazione potrà essere condotta in modo autotermico, ossia se il calore di reazione sarà sufficiente per portare il sistema nel campo di temperature alle quali sarà soddisfacente la resa all'equilibrio nei prodotti desiderati.

Nota la pressione di esercizio, la composizione dell'alimentazione e la temperatura iniziale, le variabili da determinare per risolvere il sistema sono quindi 8 (compresa la temperatura di equilibrio).

Se si opera in difetto di ossigeno rispetto allo stochiometrico per la combustione totale del metano, la percentuale di ossigeno presente all'equilibrio termодinamico sarà trascurabile; inoltre si può postulare che esistono delle condizioni in cui non vi è presenza di carbonio elementare all'equilibrio, per cui il numero di variabili da determinare si riduce a 6. L'ipotesi relativa all'assenza di carbonio elementare all'equilibrio dovrà essere verificata a posteriori.

Sono quindi sufficienti 6 equazioni per risolvere il sistema. Tre di queste sono le equazioni di bilancio del carbonio, dell'ossigeno e dell'idrogeno. Un'altra equazione è fornita dal bilancio termico. Le altre due debbono essere due equazioni di equilibrio, scelte in modo che contengano tutti i componenti presenti all'equilibrio.

Mayland e Hays [61] che hanno studiato questo sistema, hanno scelto le equazioni:

\[
\begin{align*}
26, \ III & \quad \text{CH}_4 + \text{H}_2\text{O} \Leftrightarrow \text{CO} + 3\text{H}_2 \\
27, \ III & \quad \text{H}_2 + \text{CO}_2 \Leftrightarrow \text{CO} + \text{H}_2\text{O}.
\end{align*}
\]

Per verificare l'ipotesi relativa all'assenza di carbonio elementare — che si deposita sotto forma di nerofumo — è stato scelto l'equilibrio:

\[
28, \ III \quad \text{C} + \text{CO}_2 \Leftrightarrow 2\text{CO}.
\]

Si poteva anche scegliere l'equilibrio:

\[
29, \ III \quad \text{CH}_4 \Leftrightarrow \text{C} + 2\text{H}_2,
\]

che è combinazione lineare dei tre equilibri concatenati precedenti.

Dall'equilibrio (28, III) si deduce che, affinché non vi sia nerofumo all'equilibrio, è sufficiente che sia verificata la disuguaglianza: \(\frac{P_{\text{CO}}^2}{P_{\text{CO}_2}} < K_{(28,\text{III)}} \).

Alcuni dei risultati ottenuti da Mayland e Hays sono riportati nelle figure (3, III), (4, III) e (5, III). I calcoli sono stati effettuati supponendo che i gas abbiano comportamento ideale, come è lecito, date le alte temperature alle quali vengono effettuate le reazioni considerate.

I dati delle figure indicano che è possibile realizzare le reazioni desiderate ottenendo rese sufficientemente elevate in gas di sintesi, senza che si abbia formazione di nerofumo.
Si nota che le rese rispetto a CH₄ e O₂ diminuiscono all’aumentare della pressione. La resa rispetto a CH₄ aumenta all’aumentare delle temperature mentre quella rispetto a O₂ diminuisce.

![Graph](image)

Fig. (3, III) - Equilibrio per la reazione adiabatica tra CH₄ e O₂. Temperatura di preriscaldamento: 540 °C; \(P = 20 \text{ atm} \); (da MAYLAND e HAYS [61]).

Questi risultati sono assai ovvii: in effetti, all’aumentare della pressione l’equilibrio (26, III) si sposta verso sinistra e all’aumentare della temperatura lo stesso equilibrio si sposta verso destra. D’altra parte, per aumentare la temperatura adiabatica di reazione, si deve aumentare il rapporto \(O_2/CH_4 \), con conseguente maggior formazione di CO₂ e H₂O; ne consegue che all’aumentare della temperatura la resa rispetto all’ossigeno diminuisce.

![Graph](image)

Fig. (4, III) - Resa in \((CO + H_2)\) rispetto al CH₄ alimentato, nella reazione adiabatica tra CH₄ e O₂. Temperatura di preriscaldamento: 540 °C; (da MAYLAND e HAYS [61]).
Nei processi industriali si opera sotto pressione (20-30 atm) per le stesse ragioni viste parlando della reazione (16, III) e ad una temperatura di circa 1400-1500 °C. In queste condizioni la reazione non necessita di catalizzatore e richiede, per dar luogo a risultati soddisfacenti, un rapporto \(O_2/CH_4 > 0,6 \).

![Fig. (6, III) - Resa in \((CO + H_2)\) rispetto al \(O_2 \) alimentato, nella reazione adiabatica tra \(CH_4 \) e \(O_2 \). Temperatura di preriscaldamento: 540 °C; (da Mayland e Hays [61]).](image)

Un’ulteriore osservazione che può essere fatta dallo studio termodinamico della reazione considerata, riguarda la variazione di composizione che può subire il sistema durante il suo raffreddamento. In effetti, al diminuire della temperatura gli equilibri si spostano, e, al disotto di una certa temperatura, si cade entro la zona di formazione di nerofumo a causa dello spostamento dell’equilibrio di Boudouard (28, III).

Ciò appare chiaramente dai dati riportati nella fig. (6, III).

![Fig. (6, III) - Equilibrio isotermo della reazione tra \(O_2 \) e \(CH_4 \) \((P = 20 \text{ atm})\) (da Montgomery, Weinberger, Hoffman [66]).](image)

Ne deriva che il sistema dovrà essere raffreddato in modo tale da portarlo rapidamente ad una temperatura alla quale risultino praticamente nulle le velocità delle possibili reazioni.
Uno studio termodinamico simile a quelli citati in questo paragrafo, era stato effettuato in precedenza da Natta e Pionteelli [69] per la reazione tra CH₄, O₂ e H₂O. Operando in presenza di vapor acqueo si possono facilmente ottenere gas con rapporto CO : H₂ = 1 : 2, direttamente utilizzabili per la sintesi di CH₃OH. I risultati di questo studio verranno illustrati in altra parte del corso.

Le considerazioni fin qui riportate suppongono che il sistema raggiunga l'equilibrio termodinamico assoluto alla temperatura di reazione. In pratica questa condizione non è necessariamente verificata, e per poter precisare ulteriormente altre condizioni operative e discutere la natura di altri fenomeni che si possono verificare durante la reazione, si deve tener conto anche dei fattori cinetici e tecnologici e — almeno in parte — del meccanismo globale di reazione. Questi argomenti verranno ripresi e ulteriormente approfonditi nel volume dedicato allo studio della realizzazione dei processi industriali.

c) Esempi di reazioni esotermiche interessate da equilibri

Esempi tipici di reazioni esotermiche di importanza industriale interessate da equilibri sono la sintesi dell'ammoniacca e la sintesi del metanol:

\[\frac{1}{2} \text{N}_2 + \frac{3}{2} \text{H}_2 \rightleftharpoons \text{NH}_3; \quad \Delta H^o_{\text{400°C}} = -12550 \text{ cal/mole NH}_3 \]

\[\Delta G^o = -11606 + 24,56 T \text{ (°K)} \text{ cal/mole NH}_3 \]
(per T tra 300 e 600 °K);

\(31, \text{ III})\]

\[\text{CO} + 2 \text{H}_2 \rightleftharpoons \text{CH}_3\text{OH}; \quad \Delta H^o_{\text{400°C}} = -24500 \text{ cal/mole CH}_3\text{OH} \]

\[\Delta G^o = -22858 + 56,02 T \text{ (°K)} \text{ cal/mole CH}_3\text{OH} \]
(per T tra 300 e 600 °K).

I \(\Delta G^o \) di queste reazioni si annullano rispettivamente a circa 200 °C e 140 °C, temperature alle quali le reazioni considerate non avvengono, per ragioni cinetiche, anche se si opera in presenza dei migliori catalizzatori utilizzabili nei processi industriali.

Per aumentare la velocità di reazione è necessario operare a temperature superiori, ove le reazioni non sono termodinamicamente favorite, i \(\Delta G^o \) corrispondenti essendo positivi.

Tenuto presente che le reazioni considerate avvengono con diminuzione del numero di molecole, per ottenere rese soddisfacenti anche se \(\Delta G^o > 0 \), si deve operare sotto pressione. Ad esempio, nei casi sopra citati, ad alcune centinaia di atmosfere. In questo modo si diminuisce, a parità di composizione, il valore istantaneo di \(\Delta G \) (non di \(\Delta G^o \) che è costante) e sì aumenta la resa raggiungibile all'equilibrio termodinamico.
La pressione di esercizio si può calcolare fissando ad esempio la temperatura di reazione e la resa massima desiderata in un solo passaggio. Per poter effettuare questi calcoli in modo corretto, si deve tener conto del comportamento non ideale dei gas (vedi cap. IV).

Altre reazioni di importanza industriale, che rientrano nella classe qui considerata, sono la reazione di sintesi di C_3H_8OH da C_2H_4 e vapore acqueo, la reazione di conversione con vapor d'acqua del CO a CO$_2$ e H$_2$ e la reazione di ossidazione di SO$_2$ a SO$_3$. Queste reazioni verranno illustrate in altra parte del corso.

4. Diagramma di Francis - Stabilità relativa di idrocarburi e di altri composti organici. — Lo studio della termodinamica delle reazioni interessate da soli idrocarburi e dagli elementi che li compongono, nonchè l’esame della stabilità relativa degli idrocarburi, può essere vantaggiosamente effettuato con l’ausilio del diagramma di Francis [23].

In questo diagramma (fig. 7, III) vengono riportati i $\Delta G^0/n$ di formazione degli idrocarburi, n essendo il numero di atomi di carbonio contenuti nell’idrocarburo considerato.

Per comprendere la ragione per la quale in questo diagramma i ΔG^0 di formazione sono divisi per n, si consideri ad esempio la reazione (18, III) di preparazione dell’acetilene da metano. Diremo che l’acetilene è termodinamicamente più stabile del metano quando il ΔG^0 della reazione considerata è minore di zero. Per una data temperatura, questo ΔG^0 si può leggere direttamente — a meno di un multiplo — nel diagramma di Francis: in effetti, per la reazione considerata, la differenza tra le ordinate delle curve corrispondenti rispettivamente all’acetilene e al metano è uguale a:

$$\frac{\Delta G^0}{2} = \frac{\Delta G^0_{C_2H_4}}{2} - \frac{\Delta G^0_{CH_4}}{1}$$

Generalizzando, diremo che l’idrocarburo C_yH_z (supposto allo stato gassoso) è termodinamicamente più stabile dell’idrocarburo C_aH_b (supposto allo stato gassoso), quando è negativo il ΔG^0 della reazione:

(32, III) \[aC_yH_z \leftrightarrow bC_yH_z + cH_2 \]

(ove: \[a\alpha = b\gamma; a\beta = b\delta + 2c \]).

Osserveremo che la rappresentazione dei ΔG^0 in funzione di T sarebbe del tutto diversa da quella riportata nel diagramma di Francis se il valore del ΔG^0 per ciascun composto non fosse diviso per il numero di atomi di carbonio del composto considerato. Ad esempio le coordinate dei punti di intersezione delle diverse curve sarebbero diverse.
Fig. 7, III - Diagramma di Francis per gli idrocarburi.
Per una corretta interpretazione del diagramma di Francis si deve ancora osservare che per precisare la variazione di stabilità termodinamica con la temperatura di un dato composto, si deve tener conto dei valori di $\Delta G^\circ/T$ (e non semplicemente di ΔG°), dato che $\ln K = -\Delta G^\circ/R T$.

Da quanto precede si rileva che il diagramma di Francis può essere utilizzato per studiare la termodinamica delle reazioni di trasformazioni di idrocarburi. Ad esempio i ΔG° delle reazioni (18-21, III) e le temperature alle quali tali ΔG° si annulano, si possono ricavare direttamente dal diagramma.

Il diagramma di Francis mette anche in evidenza la stabilità relativa degli idrocarburi sia tra di loro, sia rispetto agli elementi che li costituiscono. Si osserva anzitutto che soltanto le paraffine sono termodinamicamente stabili ($\Delta G^\circ < 0$), rispetto agli elementi che li costituiscono, e ciò al disotto di una certa temperatura. È per questa ragione che gli idrocarburi naturali non contengono composti insaturi leggeri (olefine e diolefine leggere).

Le curve corrispondenti alle n-paraffine sono tra loro praticamente parallele. All'aumentare del numero di atomi di carbonio esse tendono ad una curva limite. Questa curva, calcolata con il metodo dei contributi di gruppo, riportato in un paragrafo precedente, diventerebbe assimilabile a due segmenti di retta le cui equazioni corrispondono a quelle calcolabili con i dati relativi al gruppo $-\text{CH}_2-$ riportati nella tabella (1, II).

Verso le temperature più alte, i composti insaturi diventano più stabili dei composti saturi; per questa ragione, come è stato osservato nel paragrafo precedente, è possibile preparare detti composti a partire dagli idrocarburi saturi, operando a temperature sufficientemente elevate.

A bassa temperatura l'acetilene è termodinamicamente molto instabile ($\Delta G^\circ \gg 0$) rispetto ai propri elementi; è per questa ragione (tenuto conto anche dell'elevato valore del ΔH di formazione) che questo composto compresso anche a poche atmosfere può dare luogo, sotto l'azione di un innesco, a violenti esplosioni. All'aumentare della temperatura, la instabilità termodinamica dell'acetilene diminuisce fino a diventare minore di quella degli altri idrocarburi per $T > 1600^\circ\text{K}$.

Si può anche notare che a temperatura ambiente sussiste ad esempio la seguente scala di stabilità termodinamica.

etano > benzene > etilene > butadiene \gg acetilene.

L'elevata stabilità del benzene rispetto all'etilene che si manifesta a tutte le temperature, è dovuta com’è ben noto, ai fenomeni di coniugazione (di delocalizzazione di elettroni) che conferiscono all'anello aromatico un'elevata energia di risonanza.

È assai utile saper individuare questi fenomeni di stabilizzazione non solo nei composti aromatici, ma anche in altre molecole, o in radicali, o in ioni, in quanto tale nozione può consentire ad esempio di precisare la natura dei prodotti ot-
tenibili in una data reazione, o di giustificare la capacità di un dato composto di reagire in una data reazione.

In questo paragrafo riporteremo al riguardo alcuni esempi relativi a molecole; altri esempi relativi a radicali e ioni verranno riportati in un prossimo paragrafo.

Si considerino le seguenti reazioni:

\[
\begin{align*}
(33, \text{III}) & \quad \text{H}_2 \text{C} \text{CH}_2 \text{C} \text{CH}_2 \text{CH}_2 \text{C} \text{CH} + \text{H}_2; \quad \Delta H_{25^\circ C}^{\circ} = 27,7 \text{ kcal/mole} \\
(34, \text{III}) & \quad \text{H}_2 \text{C} \text{CH}_2 \text{C} \text{CH}_2 \text{CH}_2 \text{C} \text{CH} + 3 \text{H}_2; \quad \Delta H_{25^\circ C}^{\circ} = 49,2 \text{ kcal/mole}
\end{align*}
\]

Si calcola che i \(\Delta G^o \) di queste reazioni sono rispettivamente uguali a:

\[
\begin{align*}
\Delta G^{\circ}_{(33, \text{III})} & = 28637 - 34,99 \frac{T}{\text{cal/mole per } T \text{ tra } 300 \text{ e } 600 \, ^\circ\text{K}}; \\
& \quad 29015 - 35,53 \frac{T}{\text{cal/mole per } T \text{ tra } 600 \text{ e } 1500 \, ^\circ\text{K}}; \\
e & = \Delta G^{\circ}_{(34, \text{III})} = 51005 - 90,19 \frac{T}{\text{cal/mole per } T \text{ tra } 300 \text{ e } 600 \, ^\circ\text{K}}; \\
& \quad 51839 - 91,58 \frac{T}{\text{cal/mole per } T \text{ tra } 600 \text{ e } 1500 \, ^\circ\text{K}}.
\end{align*}
\]

Si nota che oltre circa 400 \(^\circ\text{K}\) la seconda reazione è più favorita della prima. Al di sopra di questa temperatura il benzene è termodinamicamente più stabile del cicloesene ed è per questa ragione che nei processi industriali per la produzione di benzene — per via petrochimica — che sfruttano la reazione (34, III) e che operano a 450-500 \(^\circ\text{C}\), i prodotti di reazione contengono idrocarburi aromatici e non cicloolefine o ciclodiolefine.

Si osserva anche che il triplo del \(\Delta H^o \) di deidrogenazione del cicloesano a cicloesene è superiore al \(\Delta H^p \) di deidrogenazione del cicloesano a benzene. La differenza tra queste due grandezze fornisce appunto l’energia di risonanza \(E_r \) del benzene a 25 \(^\circ\text{C}\) (\(^{(*)}\)):

\[
(35, \text{III}) \quad E_r = 3 \Delta H_{(33, \text{III})}^{p} - \Delta H_{(34, \text{III})}^{p} = 34 \text{ kcal/mole}
\]

\(^{(*)}\) I base a questa definizione sarebbe più corretto parlare di entalpia di risonanza.
I fenomeni di stabilizzazione per delocalizzazione degli elettroni non si riscontrano solamente nei composti aromatici, ma anche nei composti contenenti doppi legami coniugati, oppure legami insaturi adiacenti a eteroatomi con doppietti elettroni liberi che possono delocalizzarsi.

Ad esempio, l'energia di risonanza del butadiene è uguale a circa 3 kcal/mole, quella del furano a 20 kcal/mole e quella dell'urea a 30 kcal/mole (ved. tab. (1, III)).

<table>
<thead>
<tr>
<th>Composto</th>
<th>Energi di risonanza (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>36 butadiene—1,3 CH₂=CHCH=CH₂ 2,7-3,0</td>
</tr>
<tr>
<td>Toluene</td>
<td>35 pentadiene—1,3 CH₃CH=CHCH=CH₂ 4</td>
</tr>
<tr>
<td>Stirene</td>
<td>38 urea OC(\text{NH}_2) 30-33</td>
</tr>
<tr>
<td>Tiofene</td>
<td>28-29 anidride carbonica O=C=O 27</td>
</tr>
<tr>
<td>Furano</td>
<td>16-22 acido acetico H₃C(\text{CO}^{\text{O}})OH 13-14</td>
</tr>
<tr>
<td>Pirrolo</td>
<td>21-24</td>
</tr>
</tbody>
</table>

L'energia di risonanza del butadiene si calcola ad esempio facendo la differenza tra il doppio del calore di idrogenazione del butene-1 (2 \(\times\) 30,3 kcal/mole) ed il calore di idrogenazione del butadiene (57,1 kcal/mole). È opportuno osservare che l'energia di stabilizzazione del butadiene può essere attribuita al fatto che l'energia del legame CH−CH di questo composto è superiore a quella dei legami semplici H₂C−CH₂ nelle paraffine [17]: il legame semplice del butadiene è costituito da due atomi di C ibridizzati sp³, mentre nelle paraffine gli atomi di C sono ibridizzati sp².

Per l'urea e per altri composti per i quali non si possono misurare calori di idrogenazione, l'energia di risonanza si calcola facendo la differenza tra il calore di combustione calcolabile in base agli atomi contenuti nel composto ed il calore di combustione effettivo del composto, i gruppi \(\text{C}=\text{O}\) essendo considerati come se fossero chetonicì [105].

Un altro caso interessante di stabilizzazione attribuita a fenomeni di deloca-
lizzazione degli elettroni, si riscontra negli idrocarburi insaturi sostituiti sugli atomi di carbonio insaturi.

Si considerino ad esempio i ΔG° di formazione del butene-1 e dell’isobutene.

$$
\Delta G^\circ_{\text{butene-1}} = -1835 + 62,61 \; T \; \text{cal/mole (per } T \; \text{tra } 300 \; \text{e } 600 \; ^\circ\text{K});
$$

$$
= -4793 + 67,54 \; T \; \text{cal/mole (per } T \; \text{tra } 600 \; \text{e } 1500 \; ^\circ\text{K});
$$

$$
\Delta G^\circ_{\text{isobutene}} = -4843 + 63,54 \; T \; \text{cal/mole (per } T \; \text{tra } 300 \; \text{e } 600 \; ^\circ\text{K});
$$

$$
= -9001 + 70,47 \; T \; \text{cal/mole (per } T \; \text{tra } 600 \; \text{e } 1500 \; ^\circ\text{K}).
$$

Si osserva che negli intervalli di temperatura considerati, l’isobutene è sempre termodinamicamente più stabile del butene-1.

Lo stesso fenomeno si riscontra anche se il sostituente è un alchile diverso dal metile: ad esempio il 2-etilbutene-1 è più stabile del esene-1.

Tale aumento di stabilità non si riscontra invece se i sostituenti non sono adiacenti ad un doppio legame; ad esempio la stabilità termodinamica del 3-metilbutene-1 non è molto diversa da quella del pentene-1, come risulta dal confronto tra i ΔG° di formazione di questi due composti:

pentene-1

$$
\Delta G^\circ = -7118 + 87,04 \; T \; \text{cal/mole (per } T \; \text{tra } 300 \; \text{e } 600 \; ^\circ\text{K});
$$

$$
= -10706 + 93,02 \; T \; \text{cal/mole (per } T \; \text{tra } 600 \; \text{e } 1500 \; ^\circ\text{K});
$$

3-metilbutene-1

$$
\Delta G^\circ = -8141 + 89,36 \; T \; \text{cal/mole (per } T \; \text{tra } 300 \; \text{e } 600 \; ^\circ\text{K});
$$

$$
= -12029 + 97,22 \; T \; \text{cal/mole (per } T \; \text{tra } 600 \; \text{e } 1500 \; ^\circ\text{K}).
$$

Anche in questo caso, gli aumenti di stabilità sono stati attribuiti a fenomeni di risonanza dovuti, secondo talune autorità, ad un particolare tipo di coniugazione, denominato da Mulliken «iperconiugazione» [68].

Una conseguenza interessante che si può trarre dallo studio di questi fenomeni di iperconiugazione, riguarda i valori relativi dei calori di idrogenazione delle olefine. In effetti, tenuto presente che le energie di risonanza si possono misurare da differenze tra i calori di idrogenazione di composti base e del composto considerato, si comprende come il calore di idrogenazione dell’etilene sia superiore al calore di idrogenazione delle olefine superiori (vedi tab. 2, III). Dai dati riportati nella tabella (2, III) si osserva inoltre che i calori di idrogenazione delle alfa-olefine contenenti un solo gruppo alchilico legato al carbonio insaturo, sono superiori ai valori corrispondenti per le olefine aventi due sostituenti legati ai carboni insaturi. Il minore calore di idrogenazione dello stirene a etilbenzene rispetto alle altre olefine aventi un solo sostituente, è dovuto al fatto che in questo composto il doppietto π del doppio legame è coniugato con un anello aromatico.
<table>
<thead>
<tr>
<th>Composto</th>
<th>Formula</th>
<th>$-\Delta H$ kcal/mole</th>
<th>Bibliogr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>etilene</td>
<td>$\text{CH}_2=\text{CH}_2$</td>
<td>32,82</td>
<td>[47]</td>
</tr>
<tr>
<td>Olefine con 1 sostituente legato al carbonio insaturo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propilene</td>
<td>$\text{CH}_3=\text{CHCH}_3$</td>
<td>30,12</td>
<td>[48]</td>
</tr>
<tr>
<td>butene-1</td>
<td>$\text{CH}_3=\text{CHCH}_2\text{CH}_3$</td>
<td>30,34</td>
<td>[48]</td>
</tr>
<tr>
<td>eptene-1</td>
<td>$\text{CH}_3=\text{CH}(\text{CH}_2)\text{CH}_3$</td>
<td>30,14</td>
<td>[49]</td>
</tr>
<tr>
<td>3,3-dimetilbutene-1</td>
<td>$\text{CH}_3=\text{CHC}(\text{CH}_3)_2$</td>
<td>30,34</td>
<td>[19]</td>
</tr>
<tr>
<td>acido acrilico (*)</td>
<td>$\text{CH}_3=\text{CHOCH}_2\text{OH}$</td>
<td>30,35</td>
<td>[88]</td>
</tr>
<tr>
<td>stirene (**)</td>
<td>$\text{CH}_2=\text{CH(Ch}_2\text{H}_4)$</td>
<td>28,6</td>
<td>[67]</td>
</tr>
<tr>
<td>Olefine con 2 sostituenti legati al carbonio insaturo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isobutene</td>
<td>$\text{CH}_3=\text{C(CH}_3)_2$</td>
<td>28,39</td>
<td>[48]</td>
</tr>
<tr>
<td>2 - metilbutene-1</td>
<td>$\text{CH}_3=\text{CCH}_3(\text{CH}_3)_2$</td>
<td>28,49</td>
<td>[49]</td>
</tr>
<tr>
<td>trans-butene-2</td>
<td>$\text{CH}_3\text{CH}=\text{CHCH}_3$</td>
<td>27,62</td>
<td>[48]</td>
</tr>
<tr>
<td>cis-butene-2</td>
<td>$\text{CH}_3\text{CH}=\text{CHCH}_3$</td>
<td>28,57</td>
<td>[48]</td>
</tr>
<tr>
<td>acido metacrilico (*)</td>
<td>$\text{CH}_3=\text{C(CH}_3)_2\text{COOH}$</td>
<td>28,24</td>
<td>[88]</td>
</tr>
</tbody>
</table>

(*) in fase liquida a 25 °C.
(**) idrogenazione a etilbenzene.

Si può ancora ricordare ad esempio che la maggior velocità di attacco del l’anello del toluene, rispetto a quello del benzene, da parte di agenti elettrofili (come ad esempio nelle reazioni di nitrizzazione) è dovuta all’aumento della densità elettronica dell’anello del toluene, provocato dal metile.

Allo stesso modo, si spiega la maggior reattività del propilene rispetto all’etilene e dell’isobutene rispetto al butene-1 in processi interessati da meccanismo cationico.

In questi casi la reattività è anche influenzata dall’effetto induttivo-donatore del gruppo metilico, che provoca la polarizzazione dell’anello aromatico nel toluene o del doppio legame nel propilene.

È opportuno precisare che l’effetto qualitativo dei gruppi alchilici sulla reattività chimica può essere spiegato senza ricorrere all’ipercongiugazione (nel senso definito da Mulliken); molti autori ritengono anzi che l’ipercongiugazione non giochi praticamente nessun ruolo nel caso delle molecole neutre [17].

Un altro esempio interessante di stabilità relativa di idrocarburi riguarda
la cicloparaffine e le cicloolefine. Dai dati riportati nella tabella (11, II) si rileva che le cicloparaffine aventi un anello a 3 atomi di carbonio sono termodinamicamente meno stabili delle cicloparaffine aventi anelli a 6 atomi. Ciò è dovuto al fatto che nelle cicloparaffine con anello a 3 atomi di carbonio (ad esempio ciclopropano) si hanno forti distorsioni degli angoli interni di valenza, rispetto al valore normale corrispondente all’atomo di carbonio tetraedrico (109° 28’).

Nelle cicloparaffine con anelli a 6 atomi di carbonio, gli angoli di valenza sono invece tutti molto prossimi al valore normale.

Per la stessa ragione, nel caso delle cicloolefine, gli anelli esenici sono più stabili degli anelli pentenici.

5. Stabilità relativa di radicali e ioni - Energie di legame e loro applicazione allo studio di reazioni chimiche. — I fenomeni di stabilizzazione discusse nel paragrafo precedente, dovuti a delocalizzazione di elettroni (fenomeni di risonanza o di mesomeria: si ricorda che la risonanza mette l’accento sugli aspetti energetici, mentre la mesomeria mette l’accento sugli aspetti strutturali dello stesso fenomeno), non sono propri solamente di molecole, ma si riscontrano anche in ioni e radicali.

Ad esempio, la natura acida degli acidi organici e del fenolo è da attribuirsi a fenomeni del genere; in effetti, per questi composti si possono scrivere le seguenti forme in risonanza:

\[
\begin{align*}
R-\text{C} & \quad \overset{\text{O}}{\equiv} \quad \overset{\text{O}}{\equiv} \\
\quad & \quad \text{O} \quad \text{O} \\
\end{align*}
\]

o meglio:

\[
\begin{align*}
R-\overset{\text{C}}{\equiv} & \quad \overset{\text{O}}{\equiv} \\
\quad & \quad \overset{\text{O}}{\equiv} \text{O} \quad \text{O} \\
\end{align*}
\]

o meglio:

\[
\begin{align*}
\text{C} & \quad \overset{\text{O}}{\equiv} \\
\quad & \quad \text{O} \quad \text{O} \\
\end{align*}
\]

Anche in questi casi la carica negativa è delocalizzata.

Un caso interessante di stabilizzazione di ioni riguarda i carbocationi.

Ad esempio, è noto che negli ioni positivi ottenibili dagli idrocarburi, la carica positiva tende ad essere maggiormente localizzata sull’atomo di carbonio più sostituito. Ossia i carbocationi terziari sono più stabili di quelli secondari che sono
a loro volta più stabili di quelli primari. Ad esempio, lo ione H_2CCCH_3 è molto più stabile dello ione CH_2CHCH_3.

Su questi fenomeni hanno influenza l’effetto mesomero, l’effetto induttivo e gli effetti steric.

Ad esempio nel carbocatione terziario butile, l’effetto induttivo e l’effetto mesomero si sommano nel conferire stabilità allo ione. Inoltre, anche fattori di natura sterica intervengono nel condizionare la stabilità relativa dei carbocationi; ad esempio, per essere relativamente stabili, i carbocationi, debbono essere piani. Questa condizione è verificata nel radicale terziario butile per il quale le tre valenze uscenti dall’atomo di carbonio centrale sono nello stesso piano, gli angoli di valenza essendo uguali a 120°; ciò dà anche luogo ad un allontanamento reciproco dei gruppi metilici rispetto a quanto si avrebbe se gli angoli di valenza avessero il normale valore tetraedrico (109°28'); anche questo fattore contribuisce a stabilizzare lo ione.

La stabilità relativamente elevata del catione $\text{CH}_3\text{CCH}_3^+$ consente ad esempio di comprendere l’elevata reattività dell’isobutene nei processi di polimerizzazione caratterizzati da meccanismo cationico. In questi processi, che sono sfruttati industrialmente per la preparazione della gomma butile (copolimero dell’isobutene con 2-3% di isoprene), si opera a circa –100 °C; l’iniziatore è costituito da acidi di Lewis attivati da un cocatalizzatore: ad esempio $\text{AlCl}_3 + + \text{HCl}$, che dà luogo al complesso $[\text{AlCl}_4]^-$H$. Lo ione H^+ attacca l’olefina per formare il catione CH_3^-C^+ sul quale si addizionano successivamente le unità monomeriche.

La maggior stabilità relativa dei carbocationi nei quali la carica positiva è localizzata sull’atomo di carbonio più sostituito, spiega ad esempio la formazione di percentuali relativamente elevate di propilene nei processi di cracking di paraffine, effettuati in presenza di catalizzatori acidi (per es. SiO_2, Al_2O_3). Il meccanismo proposto per tali processi può essere così schematizzato:

\[
\begin{align*}
\text{H}_3\text{CCHCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{R} & \to \text{H}_3\text{CCH}^=\text{CH}_2 + \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{R} \\
(\text{I}) & \\
\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{R} & \to \text{H}_3\text{CCHCH}_2\text{CH}_2\text{R} \\
(\text{II}) & \\
\text{H}_3\text{CCHCH}_2\text{CH}_2\text{R} & \to \text{H}_3\text{CCH}^=\text{CH}_2 + \text{CH}_2\text{R} \text{ ecc.;} \\
(\text{III}) &
\end{align*}
\]
nello ione (I), derivante dall’attivazione della paraffina ad opera del catalizzatore acido, la rottura del legame carbonio-carbonio avviene in posizione β rispetto all’atomo di carbonio sul quale è localizzata la carica. Tale scissione dà luogo ad una molecola di propilene ed al carbocatione (II). Quest’ultimo isomerizza nello ione (III) più stabile del precedente, poiché la carica è localizzata su un atomo di carbonio più sostituito. La scissione dello ione (III) fornisce a sua volta un’altra molecola di propilene e così via.

Nei cracking termici delle paraffine, che sono caratterizzati da meccanismo radicalico, è maggiore invece la percentuale di etilene rispetto a quella di propilene.

Molto interessante, per le conclusioni alle quali può condurre, è l’applicazione dei fenomeni fin qui esemplificati al caso dei radicali.

Ad esempio, si può facilmente comprendere la seguente scala di stabilità:

\[
\begin{align*}
&\begin{array}{c}
\text{C} \\
\text{H} \\
\end{array} < \\
&\begin{array}{c}
\text{C} \\
\text{H} \\
\end{array} < \\
&\begin{array}{c}
\text{C} \\
\end{array}
\end{align*}
\]

nel radicale trifenilmetano, l’eletrone può essere delocalizzato su un maggior numero di anelli aromatici.

I fenomeni dovuti alla presenza di gruppi CH_3 nei carbocationi si possono manifestare anche nei radicali.

\[
\begin{align*}
&\begin{array}{c}
\text{CH}_3 \\
\text{C} \\
\text{CH}_3 \\
\end{array} \quad \text{Ad esempio, il radicale} \\
&\begin{array}{c}
\text{CH}_3 \\
\text{C} \\
\text{CH}_3 \\
\end{array} \quad \text{sarà più stabile del radicale} \\
&\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\end{array}
\end{align*}
\]

data la presenza nel primo caso di due gruppi CH_3 e di un anello aromatico adiacenti all’atomo di carbonio sul quale è localizzato l’eletrone.

In linea di principio, saranno più stabili i radicali nei quali l’eletrone non accoppiai è localizzato su un atomo di carbonio adiacente ad un anello aromatico, a un atomo di carbonio olefinico, a un eteroatomo con doppietti π, o ad un metile.

Queste nozioni possono essere direttamente utilizzate per giustificare i valori relativi dell’energia di legame dei composti organici.

Per definizione, l’energia di un legame è l’energia che si deve fornire per dissiociare omoliticamente il legame in questione.

Ad esempio, l’energia di dissiociazione di un primo legame $\text{C}—\text{H}$ nel metano è uguale al ΔH della seguente reazione di scissione.

\[
(36, \text{III}) \quad \text{CH}_4 \rightarrow \text{CH}_3 + \text{H}^-.
\]
Ne consegue che il valore dell'energia di legame dipende dalla stabilità del radicale derivante dalla scissione del legame stesso.

Ad esempio, nell'isopropilbenzene l'energia di dissociazione del legame C—H del carbonio terziario è minore di quella dei legami corrispondenti ai carboni primari, poiché il radicale \(\text{CH}_3 \quad \text{C—CH}_2 \) è più stabile del radicale \(\text{CH}_3\quad \text{CH—CH}_3 \).

Così nell'acetaldeide, l'energia di dissociazione del legame C—H del gruppo aldeico è minore di quella dei legami corrispondenti al gruppo metilico perché il radicale \(\text{CH}_3\text{CO} \) è più stabile del radicale \(\text{CH}_4\text{CHO} \).

Sulla base di queste osservazioni, si comprende come, in molti casi, l'attacco di una molecola da parte di un reagente su un legame di un dato tipo (ad esempio C—H nei composti organici), possa avvenire preferibilmente in corrispondenza del legame la cui l'energia di dissociazione è minore.

Alcuni valori di energie di dissociazione di legami sono riportati nella tabella (3, III).

<table>
<thead>
<tr>
<th>Legame</th>
<th>Valore (kcal/mol)</th>
<th>Bibliografia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_3—\text{H})</td>
<td>101</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{CH}_2\text{CH}_3—\text{H})</td>
<td>98</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{CH}_3\text{CH}_2\text{CH}_3—\text{H})</td>
<td>95</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{CH}_2\text{CHCH}_3—\text{H})</td>
<td>89*</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C—H})</td>
<td>85*</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{CH}_4—\text{H})</td>
<td>85*</td>
<td>[51]</td>
</tr>
<tr>
<td>(\text{CH}==\text{C—H})</td>
<td>121*</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{CH}_2\text{CO—H})</td>
<td>85*</td>
<td>[95]</td>
</tr>
<tr>
<td>(\text{H—CH}_4\text{CHO})</td>
<td>90-95</td>
<td>[87]</td>
</tr>
</tbody>
</table>

(*) vedi anche Stetcie [91] e Cottrell [13].
Si osserva che le energie dei legami C—H del metano e dell’etano sono relativamente elevate e superiori a quelle dei legami corrispondenti al gruppo CH₂ nel propano, o al gruppo CH nell’isobutano. È per questa ragione che il metano reagisce con l’ossigeno con velocità sufficientemente elevata solo a temperature superiori a 500 °C (4); mentre gli idrocarburi paraffinici superiori all’etano sono ossidati, pure in assenza di catalizzatori, anche a temperature inferiori a 350 °C. In questi ultimi composti l’attacco da parte dell’ossigeno avverrà preferenzialmente (almeno in un primo tempo) sugli atomi di carbonio più sostituiti, data la minor energia dei legami C—H corrispondenti.

Nel caso dell’isopropilbenzene

\[
\begin{align*}
\text{CH}_3 \\
\text{CH} \\
\text{CH}_3 \\
\end{align*}
\]

poiché il legame C—H corrispondente al carbonio terziario ha una reattività relativamente elevata, soprattutto rispetto a quella degli altri legami contenuti nella molecola, l’ossidazione potrà avvenire a bassa temperatura (\(\sim 130 \, ^{\circ}\)C) dando luogo, con rese elevate (\(\sim 90\%\)), all’idroperossido di cumene, in assenza di catalizzatori:

\[
\begin{align*}
\text{CH}_3 \\
\text{COOH} \\
\text{CH}_3 \\
\end{align*}
\]

Questa reazione è un passaggio intermedio di un importante processo per la preparazione di fenolo e acetone, che vengono ottenuti per decomposizione dell’idroperossido di cumene:

\[
\begin{align*}
\text{CH}_3 \\
\text{COOH} \rightarrow \text{\text{OH} + CH}_3\text{COCH}_3. \\
\text{CH}_3 \\
\end{align*}
\]

Dai dati riportati nella tabella, si comprende anche la ragione per la quale il toluene può essere ossidato con relativa facilità per dare acido benzoico, mentre l’ossidazione diretta del benzene a fenolo è molto più difficoltosa.

Nel caso dell’acetaldeide, l’energia del legame C—H del gruppo aldeico è inferiore a quella del gruppo metilico ed è relativamente bassa; è ancora per questa ragione che l’acetaldeide può essere ossidata a bassa temperatura (50-70 °C)

\(\text{(*)} \) Una volta innescata la reazione di combustione del metano procede però rapidamente (con meccanismo radicalico a catena) data l’elevata reattività dei radicali alchilici nei riguardi dell’ossigeno.
in presenza di catalizzatori che decompongono i legami perossidici, per dare luogo ad acido acetico con rese molto elevate e, a temperature ancora più basse (0°C), in assenza di catalizzatori, per dare acido peracetico. In entrambi i casi l’attacco da parte dell’ossigeno avviene sul gruppo aldeidico.

Molto interessante è anche il caso delle olefine. Nell’ossidazione del propilene l’attacco dell’ossigeno avviene sul gruppo CH₃ (vedi tabella (3, III)) e si ottiene l’acroleina. Nell’ossidazione catalitica dell’etilene (che si effettua a 250-300°C su catalizzatori a base di Ag) si ottiene invece ossido di etilene anche se questo composto è costituito da un anello a 3 atomi, la cui formazione è sempre relativamente poco favorita.

Considerazioni analoghe si possono fare per le reazioni di clorurazione delle olefine. Per questi composti, sia la reazione di addizione al doppio legame (specialmente in presenza di catalizzatori ionici), sia le reazioni di sostituzione, sono molto rilevanti ma, a temperature sufficientemente elevate (> 350°C), le seconde risultano più favorite delle prime. Anche in questo caso, se si opera ad alta temperatura, la reazione di sostituzione avviene per via radicalica in corrispondenza del legame C—H avente una minore energia di legame. Ad esempio la reazione tra Cl₂ e propilene, che si conduce industrialmente a circa 525°C, in assenza di catalizzatori, dà luogo — con rese elevate — a cloruro di allile (CH₃=CHCH₂Cl) piuttosto che ad altri cloro derivati. A bassa temperatura invece, con catalizzatori ionici, prevale l’addizione al doppio legame, con formazione di CH₃ClCHClCH₃.

Altri valori di energie di disassociazione omolitica di legami per alcune sostanze o gruppi, sono riportati nella tabella (4, III).

Tabella (4, III) - Energie di disassociazione omolitica (in kcal) in fase vapore di legami

<table>
<thead>
<tr>
<th>Chemica</th>
<th>Bibliogr.</th>
<th>Chemica</th>
<th>Bibliogr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H—H</td>
<td>103 [28]</td>
<td>H₃C—CH₂</td>
<td>83 [95]</td>
</tr>
<tr>
<td>O—O</td>
<td>117 [9]</td>
<td>H₂C—C₃H₅</td>
<td>82 [95]</td>
</tr>
<tr>
<td>O—O</td>
<td>30-50 [67]</td>
<td>H₃C—n-C₄H₇</td>
<td>79 [95]</td>
</tr>
<tr>
<td>Cl—Cl</td>
<td>57 [28]</td>
<td>H₃C—i-C₄H₇</td>
<td>75 [95]</td>
</tr>
<tr>
<td>N=N</td>
<td>225 [100]</td>
<td>H₄C—C₃H₅</td>
<td>82 [95]</td>
</tr>
<tr>
<td>HO—H</td>
<td>116 [28]</td>
<td>H₄C—n-C₄H₇</td>
<td>78 [95]</td>
</tr>
<tr>
<td>OC=O</td>
<td>127 [91]</td>
<td>(C₅H₄)CH(CH₃)—CH₃ 61 [53]</td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>256 [100]</td>
<td>(C₅H₄)C—C(C₅H₄)* 11 [107]</td>
<td></td>
</tr>
<tr>
<td>H₅N—H</td>
<td>100-104 [94]</td>
<td>H₂C=CHCH₃</td>
<td>61 [95]</td>
</tr>
<tr>
<td>H₃C=CH₂</td>
<td>125 [13]</td>
<td>H₃C—CHO</td>
<td>71-75 [95]</td>
</tr>
<tr>
<td>CH=CH</td>
<td>166 [13]</td>
<td>H₃C—OH</td>
<td>90 [95]</td>
</tr>
</tbody>
</table>

(*) decomposizione in soluzione.
I dati riportati in questa tabella sono ad esempio in accordo con il fatto che il cloro è l’ossigeno hanno una reattività relativamente elevata. Queste due sostanze prendono parte a diverse reazioni anche a temperatura ambiente e in assenza di catalizzatori. Si tenga presente che l’ossigeno reagisce — ad es. con gli idrocarburi — dando luogo, in un primo tempo, ad un idroperossido: \(RH + O_2 \rightarrow ROOH \); in questo caso è quindi la differenza tra le energie di dissociazione di \(O_2 \) e di \(-O-O- \) che va considerata. Dai dati relativi all’azoto si giustifica anche il fatto che tale molecola ha una notevole inerzia chimica. Come è ben noto l’azoto reagisce con l’idrogeno per dare \(NH_3 \), ma in presenza di catalizzatori ed a temperature relativamente elevate.

Il valore relativamente basso della differenza tra l’energia di dissociazione dei doppi legami \(C=C \) e dei legami semplici \(C-C \) permette di comprendere la reattività relativamente elevata dei doppi legami \(C=C \). La stessa osservazione può essere fatta, a maggior ragione, per i tripli legami.

Le energie di dissociazione \(C-C \) assumono valori alquanto diversi a seconda del composto in cui sono contenuti; queste differenze sono dovute sia a fenomeni sterici, sia a fenomeni di risonanza che stabilizzano i radicali derivanti dalla dissociazione (si osservi al riguardo il basso valore dell’energia di dissociazione dell’esafeniletano). La conoscenza di questi dati potrà permettere di meglio comprendere i fenomeni che avvengono ad esempio nella scissione termica degli idrocarburi.

È opportuno precisare che le considerazioni riportate in questo paragrafo si riferiscono alla scissione omolitica dei legami; i valori relativi alla scissione eterolitica sono evidentemente ben diversi da quelli sopra riportati; ad es., per la reazione di ionizzazione del metano [37]:

\[
CH_4 \rightarrow CH_3^+ + H^-
\]

risulta: \(\Delta H = 333 \) kcal/mole; mentre per l’acqua:

\[
H_2O \rightarrow H^+ + OH^-;
\]

\(\Delta H = 13,5 \) kcal/mole.

Le considerazioni sopra riportate si riferiscono quindi a reazioni che procedono con meccanismo radicalico e non a quelle interessate da meccanismo ionic. Ad esempio, è noto che l’etilene può essere ossidato direttamente ad acetaldeide a temperatura di circa 100 °C; in questo caso però la reazione tra l’ossigeno e l’etilene deve essere catalizzata (da \(\text{PdCl}_2 \)) ed il meccanismo è di tipo ionic.

6. Caratteristiche termodinamiche di reazioni organiche interessate da soli scambi di « gruppi ». — Un’osservazione che può essere fatta, tenuto presente il metodo di calcolo dei \(\Delta G^0 \) con i contributi di gruppo, riguarda quelle reazioni
per le quali ciascun « gruppo » che compare nei reagenti compare anche nei prodotti.

Si consideri ad esempio la reazione:

\[
(37, \text{III}) \quad \text{H}_3\text{C}_2\text{C}_2\text{H}_2 + \text{C}_2\text{H}_5 \rightleftharpoons 2 \text{C}_2\text{H}_5.
\]

I gruppi che compaiono nei due termini della reazione si elidono due a due e pertanto il \(\Delta G^0 \), calcolabile con il metodo dei contributi di gruppo, comprenderà solo i termini correttivi dovuti ai sostituenti (vedi tab. 16, II) ed i termini dovuti alla simmetria delle molecole. Si trova:

- per \(300 < T < 600 \, ^\circ\text{K} \)
 \[\Delta G^0 = -0,193 + 1,05 T - RT \ln 12 - RT \ln 2 \, \text{cal/mole} \]
- e per \(600 < T < 1500 \, ^\circ\text{K} \)
 \[\Delta G^0 = -0,615 - 0,028 T - RT \ln 12 - RT \ln 2 \]

Pertanto, per temperature non troppo alte, il \(\Delta G^0 \) della reazione considerata è sempre poco diverso da zero. In altri termini, la reazione è interessata da un equilibrio; è per questa ragione che nella produzione catalizzata (con catalizzatori FRIEDEL e CRAFT) di etilbenzene da etilene e benzene il dietilbenzene, che si forma accanto all’etilbenzene, è riciclato in modo che possa reagire con benzene per ridare etilbenzene secondo la (37, III).

In altri casi i gruppi che compaiono nei reagenti e nei prodotti non si elidono completamente due a due, ma malgrado ciò i relativi contributi si possono quasi compensare; questo è ad esempio il caso della reazione:

\[
\text{CHCl}_3 + \text{CH}_3\text{Cl} \rightleftharpoons 2 \text{CH}_2\text{Cl}_2,
\]

il cui \(\Delta G^0 \) è piccolo (\(\sim 1 \, \text{kal/mole} \)) e per la quale si può calcolare che anche il \(\Delta H^0 \) è uguale a poco più di 1 kcal/mole.

7. \(\Delta H^0 \) e \(\Delta S^0 \) di reazioni appartenenti ad una stessa classe. — Quando è possibile, i valori corretti dei \(\Delta H^0 \) e \(\Delta S^0 \) di reazione si depongono ricercare nella letteratura specializzata. È tuttavia utile tener presente che reazioni dello stesso tipo hanno spesso caratteristiche termodinamiche tra loro molto prossime. Ad esempio, in un paragrafo precedente sono già stati riportati i calori di idrogenazione di diverse olefine (vedi tabella 2, III)) e da questi dati si può osservare che il \(-\Delta H \) di idrogenazione (se si esclude l’etilene) è contenuto, per gli esempi riportati, tra circa 28-30 kcal/mole.

In chimica organica si trovano evidentemente molti esempi dello stesso tipo. Ad esempio le reazioni di idratazione delle olefine leggere ad alcoli secondari hanno
tutte un ΔH prossimo a -9000 cal/mole; il ΔH di deidrogenazione degli alcooli (superiori al metanolo) ad aldeidi o chetoni è compreso tra circa 14-17000 cal/mole.

Le seguenti reazioni di clorurazione del metano hanno tutte caratteristiche termodinamiche tra loro molto simili:

<table>
<thead>
<tr>
<th>Reazione</th>
<th>ΔH° (kcal/mole)</th>
<th>ΔS° (cal/mole °K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_4 + \text{Cl}_2 = \text{CH}_3\text{Cl} + \text{HCl}$</td>
<td>$-23,77$</td>
<td>$+2,8$</td>
</tr>
<tr>
<td>$\text{CH}_3\text{Cl} + \text{Cl}_2 = \text{CH}_2\text{Cl}_2 + \text{HCl}$</td>
<td>$-23,46$</td>
<td>$+0,04$</td>
</tr>
<tr>
<td>$\text{CH}_2\text{Cl} + \text{Cl}_2 = \text{CHCl}_3 + \text{HCl}$</td>
<td>$-25,06$</td>
<td>$-2,49$</td>
</tr>
<tr>
<td>$\text{CHCl}_3 + \text{Cl}_2 = \text{CCl}_4 + \text{HCl}$</td>
<td>$-23,56$</td>
<td>$-5,58$</td>
</tr>
</tbody>
</table>

Per queste ragioni, nella reazione di clorurazione del metano, non è possibile ottenere direttamente un solo cloroderivato. Per ragioni analoghe, nella preparazione dell'etilbenzene mediante alchilazione del benzene con etilene, oltre all'etilbenzene, si formano anche dei polialchilbenzeni, attraverso reazioni successive di alchilazione degli alchilbenzeni inferiori.

In molti casi, le analogie di natura termodinamica che si riscontrano tra talune reazioni, si traducono anche in analogie di natura pratica nella realizzazione delle reazioni stesse. Ad esempio, le caratteristiche termodinamiche delle reazioni di deidrogenazione dei n-butenli a butadiene, dell'etilbenzene a stirene, del 2-metilbutene-2 e del 2-metilbutene-1 (isoamileni) a isoprene, sono tra loro molto simili; tutte queste reazioni si conducono industrialmente praticamente alla stessa temperatura ($\sim 600^\circ$), con gli stessi catalizzatori, con gli stessi tipi di reattori e fornendo il calore di reazione allo stesso modo (mediante addizione, all'alimentazione del reattore, di vapore surriscaldato a temperatura superiore a quella di reazione).

Dai dati sopra riportati, relativi alla clorurazione successiva del metano, si può osservare che il ΔS° delle diverse reazioni è in ogni caso relativamente piccolo. Ciò è dovuto al fatto che il valore numerico del ΔS° delle reazioni è per lo più legato alla variazione del numero di molecole allo stato gassoso che prendono parte alla reazione, e precisamente all'aumentare del numero di molecole vi è aumento di disordine e pertanto l'entropia aumenta. Nelle reazioni sopra considerate non vi è variazione del numero di moli e di conseguenza i ΔS° sono poco diversi da zero.

Per le reazioni — in fase gassosa — nelle quali il numero delle molecole aumenta di una unità, il ΔS° è generalmente compreso tra 20-30 cal/mole °K (u. e. — unità entropiche); per le reazioni accompagnate da diminuzione del numero di molecole si avranno gli stessi valori numerici, ma con il segno cambiato.

(*) Valori calcolati per $T = 298^\circ$ e supposto che ciascun reagente sia nelle proprie condizioni di riferimento allo stato gassoso a $P^* = 1$ atm (da Rossini e col. [80]).
8. Processi elettrochimici - Calcolo delle tensioni standard da applicare alle celle. — Nel caso di reazioni per le quali \(\Delta G^0 > 0 \) e per le quali non è possibile o conveniente rendere negativo il valore di \(\Delta G^0 \) operando sulla temperatura, o rendere negativo il valore di \(\Delta G \) operando sulla pressione (ossia fornendo al sistema energia di tipo meccanico), per rendere possibile la reazione è necessario fornire al sistema dell’energia — diversa da quella del tipo meccanico connessa a variazioni di volume — ad es. di tipo elettrico o fotochimico.

In tal caso vanno tenute presenti le relazioni (21, I).

Consideriamo ad es. la seguente reazione

\[
(38, \text{III}) \quad \text{NaCl} + \text{H}_2\text{O} \rightarrow \text{NaOH} + \frac{1}{2} \text{Cl}_2 + \frac{1}{2} \text{H}_2.
\]

Sono noti i seguenti valori (per \(T = 25 \, ^\circ \text{C} \)) (vedi tab. 18, II).

\[
\begin{align*}
\Delta G_{\text{NaCl}, \, m=1}^{0, \text{aq(lp)}} &= -93939 \, \text{cal/mole}; \\
\Delta G_{\text{H}_2\text{O}}^{0} &= -56690 \, \text{cal/mole}; \\
\Delta G_{\text{NaOH}, \, m=1}^{0, \text{aq(lp)}} &= -100184 \, \text{cal/mole}.
\end{align*}
\]

Da questi dati si calcola, per la reazione:

\[
\Delta G_{25\, ^\circ \text{C}}^{0} = +50445 \, \text{cal/mole}.
\]

Questa reazione è resa possibile (la si utilizza su scala industriale per produrre NaOH e Cl₂) compensando l’elevato valore positivo di \(\Delta G^0 \) mediante apporto di energia elettrica, in modo che risulti:

\[
(39, \text{III}) \quad - \Delta G^0 - L_u = - \Delta G^0 - n \mathbf{F} E^0 \geq 0;
\]

ove:

\[
\mathbf{F} = 96493,5 \, \text{coulombs/g eq.} \quad \text{(nei calcoli si assumerà \(\mathbf{F} = 96500 \, \text{coul.} \)).}
\]

\(E^0 \) = tensione applicata (volt);

\(n \) = numero di cariche interessate alla reazione;

\(L_u \) = lavoro compiuto dal sistema (in questo caso \(L_u < 0 \)).

Nel caso in esame, \(n = 1 \) e si calcola, per \(T = 25 \, ^\circ \text{C} \):

\[
(40, \text{III}) \quad E^0 = \frac{\Delta G^0}{\mathbf{F}} = \frac{50455 \times 3600}{860 \times 96500} = 2,2 \, \text{volt}.
\]

La tensione standard \(E^0 \) rappresenta la differenza di potenziale che si deve applicare agli elettrodi di una cella reversibile, mantenuta a 25 °C e contenente ciascun reagente che prende parte alla reazione, in condizioni di attività unitaria, affinché il sistema sia all’equilibrio elettrochimico.
Le differenze di potenziale che si applicano in pratica tra gli elettrodi delle celle, sono sempre superio-ri al valore di \(E^0 \) sopra calcolato per la temperatura corrispondente. In effetti, nelle celle reali, anche tenuto conto del fatto che le atti-tività dei reagenti non sono necessariamente unitarie, si devono sempre compensare anche le cadute di tensione dovute alle resistenze elettriche dell’elettrolito, di eventuali diaframmi, degli elettrodi e dei collegamenti e quelle dovute ai fenomeni di polarizzazione ed ai fenomeni di sovratensione che talvolta si mani-festano agli elettrodi, ecc.

Questi argomenti saranno meglio discussi quando verranno illustrati i cri-teri per la condotta dei processi elettrochimici.

In questo paragrafo vorremmo ancora osservare che il valore di \(E^0 \) definito con la (40, III), diminuisce generalmente all’aumentare della temperatura poiché, per le reazioni sfruttate normalmente nei processi elettrochimici, i \(\Delta G^0 \) di reazione diminuiscono all’aumentare della temperatura. Ad esempio, alcuni pro-cessi industriali per la decomposizione elettrochimica dell’acqua operano sotto alta pressione parziale di vapor acqueo (e quindi a temperature relativamente elevate); in questi processi la differenza di potenziale applicata agli elettrodi della cella è inferiore a quella relativa agli stessi processi che operano a pressione atmo-sferica. Il vantaggio pratico è ancora maggiore quando i gas prodotti vengono successivamente utilizzati sotto pressione.
CAPITOLO IV

PROPRIETÀ DI GAS REALI E DI LIQUIDI PURI;
EQUILIBRI CHIMICI E CALORI DI REAZIONE IN
SISTEMI GASSOSI REALI

1. Introduzione. — Il comportamento dei sistemi chimici, in particolare se si tratta di fluidi, nelle condizioni che si riscontrano nei processi industriali, si scosta sovente in modo sostanziale dall’idealità.

Ad esempio, le proprietà molari (volume molare, calore molare, entalpia, entropia, energia interna) — o parziali molari, se si tratta di miscele — dei gas sottoposti ad alta pressione, possono differire sensibilmente dai corrispondenti valori per il sistema ideale.

In molti casi, per poter effettuare calcoli sufficientemente precisi, è necessario disporre di dati che consentano di calcolare il valore numerico dello scostamento dall’idealità, delle proprietà fisiche e termodinamiche.

Per i gas e per i liquidi puri, questi dati possono essere valutati con metodi generalizzati che richiedono solo l’impiego di alcune tabelle o diagrammi. I dati più completi e soddisfacenti al riguardo, fino ad oggi disponibili, sono quelli riportati da Hougén, Watson e Ragatz [40].

Lo studio accurato dei sistemi gassosi non ideali a più componenti, e quindi degli equilibri chimici in tali sistemi, presenta invece maggiori difficoltà e ben raramente in questi casi si possono dedurre a priori dei risultati del tutto soddisfacenti.

2. Equazioni di stato di gas reali allo stato puro. — Per lo studio del comportamento dei gas puri in condizioni di non idealità, per le quali cioè non possono essere applicate le leggi valide per i gas ideali, sono state proposte diverse equazioni di stato aventi validità più o meno approssimata (Van der Waals, Beattie-Bridgeman, Benedict-Webb-Rubin, Redlich-Kwong, Martin-Hou, ecc.)
Queste equazioni sono ad esempio presentate e discusse da Reid e Sherwood [77].

Si può anche esprimere la pressione di un gas in funzione di una serie di potenze di \(1/v\), \(v\) essendo il volume molare del gas [7]:

\[
P = \frac{R \, T}{v} \left(1 + \frac{B}{v} + \frac{C}{v^2} + \ldots \right)
\]

e B, C, \ldots prendono il nome di secondo, terzo,... coefficiente del viriale e sono funzione della sola temperatura.

L’impiego di queste equazioni è vincolato alla conoscenza di più di un coefficiente, i cui valori sono talvolta disponibili solo per alcuni gas. (Per molti idrocarburi si veda ad esempio Edmister [20 bis], che riporta anche dati \(P\), \(V\), \(T\), diagrammi di Mollier e coefficienti di fugacità e di attività).

In pratica conviene utilizzare la seguente semplice equazione:

\[
(2, \ IV) \quad P \, v = z R \, T;
\]

ove:

- \(P\) = pressione;
- \(v\) = volume molare del gas;
- \(z\) = coefficiente di comprimibilità;
- \(R\) = costante dei gas;
- \(T\) = temperatura assoluta (°K).

Il coefficiente \(z\) può essere facilmente dedotto da dati sperimentali. Per i gas maggiormente studiati, \(z\) è noto con notevole precisione. Ma, come viene precisato nel paragrafo successivo, \(z\) si può valutare con buona approssimazione per tutti i gas per qualunque coppia di valori di \(T\) e \(P\).

Per i gas ideali si ha evidentemente: \(z = 1\).

3. Stati corrispondenti. Coefficienti di comprimibilità generalizzati. — Il valore numerico del coefficiente di comprimibilità di un gas puro dipende evidentemente dal tipo di sostanza considerata, dalla temperatura e dalla pressione. Si avrà quindi per un dato gas « \(i\) »:

\[
(3, \ IV) \quad z_i = z_i(T, P).
\]

Si è tuttavia osservato sperimentalmente che per ciascuna coppia di valori della temperatura e della pressione ridotta, i gas puri si comportano approssimativamente tutti allo stesso modo (per quanto riguarda le caratteristiche \(P\), \(V\), \(T\)); pertanto, per ciascun gas, se si esprime la (3, IV) in funzione della pressione ridotta e della temperatura ridotta, si ottiene una correlazione indipendente — in prima approssimazione — dal tipo di gas considerato.
I parametri ridotti \((T_r, e P_r)\) sono forniti dalle relazioni:

\[(4, \ IV) \quad T_r = \frac{T}{T_c} \quad e \quad P_r = \frac{P}{P_c};\]

ove:

\(T_c\) e \(P_c\) = rispettivamente temperatura critica (in °K) e pressione critica del gas considerato.

Questa proprietà dei gas reali è di grande utilità per calcoli di prima approssimazione, poiché consente di sfruttare per tutti i gas una sola espressione che si definisce, per questa ragione, «equazione generalizzata».

Gli stati aventi le stesse coordinate ridotte si dicono stati corrispondenti.

Per ridurre l’entità degli errori che si commettono con l’applicazione delle equazioni generalizzate, espresse in funzione delle sole \(T_r\) e \(P_r\), è stato proposto [62] [59] di esprimerle anche in funzione di un terzo parametro ad esempio del coefficiente di comprimibilità in condizioni critiche:

\[(5, \ IV) \quad z_c = \frac{P_c v_c}{R T_c}.\]

Secondo la regola degli stati corrispondenti, \(z_c\) dovrebbe assumere lo stesso valore per tutti gli individui chimici; in pratica, i valori di questo coefficiente sono compresi tra circa 0,2 e 0,3 (vedi tabelle (1, IV) e (2, IV)).

Tabella (1, IV) - Valore del coefficiente di comprimibilità \((z_c)\) in corrispondenza del punto critico: (da HOUGEN, WATSON e RAGATZ [40]).

Acido cianidrico	0,18
Acqua	0,232
Acetone, ammoniaca, esteri, alcol	0,24-0,26
60% dei composti, principalmente idrocarburi	0,26-0,28
O₂, N₂, CO, H₂S, CH₄, C₂H₆, Ar, Ne	0,28-0,30
H₂	0,304

Per tutti i gas risulta quindi in prima approssimazione:

\[(6, \ IV) \quad z = z(T_r, P_r, Z_c).\]

La conoscenza di questa funzione generalizzata consente di valutare il coefficiente di comprimibilità (e pertanto di risolvere qualsiasi tipo di problema ove sia richiesto di calcolare una delle grandezze: \(P, v\) o \(T\), che compaiono nella (2, IV), note le altre, purché siano noti \(T_c, P_c\) e \(z_c\) per il gas considerato.)
I valori corretti della temperatura, della pressione e del coefficiente di comprimibilità critici, sono riportati nella tabella (2, IV) per diverse sostanze. Nella stessa tabella sono anche riportate le temperature di ebollizione a 760 mm Hg.

Alcuni Autori hanno proposto relazioni aventi carattere generale per la valutazione più o meno approssimata di T_c e P_c (vedi ad es. Hougen, Watson e Ragatz [40] ed i metodi riportati da Reid e Sherwood [77]).

Tabella (2, IV) - Temperatura di ebollizione a 760 mmHg e costanti critiche di alcune sostanze
(da Handbook of Chemistry and Physics [33] e da Smith e Van Ness [90]).

<table>
<thead>
<tr>
<th>Sostanza</th>
<th>T_{eb} °C</th>
<th>T_c °K</th>
<th>P_c atm</th>
<th>z_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metano</td>
<td>161,5</td>
<td>191</td>
<td>45,8</td>
<td>0,290</td>
</tr>
<tr>
<td>Etano</td>
<td>88,3</td>
<td>305</td>
<td>48,2</td>
<td>0,284</td>
</tr>
<tr>
<td>Propano</td>
<td>42,17</td>
<td>369</td>
<td>42,0</td>
<td>0,276</td>
</tr>
<tr>
<td>n-butano</td>
<td>0,50</td>
<td>426</td>
<td>36,0</td>
<td>0,274</td>
</tr>
<tr>
<td>Isobutano</td>
<td>11,72</td>
<td>407</td>
<td>37,0</td>
<td>0,282</td>
</tr>
<tr>
<td>n-pentano</td>
<td>36,2</td>
<td>470</td>
<td>33,3</td>
<td>0,268</td>
</tr>
<tr>
<td>Isopentano (2-metilbutano)</td>
<td>28</td>
<td>461</td>
<td>32,9</td>
<td>0,268</td>
</tr>
<tr>
<td>Neopentano (2,2-dimetilpropano)</td>
<td>9,5</td>
<td>434</td>
<td>31,6</td>
<td>0,268</td>
</tr>
<tr>
<td>n-esano</td>
<td>60,0</td>
<td>508</td>
<td>29,9</td>
<td>0,264</td>
</tr>
<tr>
<td>n-eptano</td>
<td>98,427</td>
<td>540</td>
<td>27,0</td>
<td>0,260</td>
</tr>
<tr>
<td>n-ottano</td>
<td>125,8</td>
<td>589</td>
<td>24,6</td>
<td>0,258</td>
</tr>
<tr>
<td>Olefine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etilene</td>
<td>103,9</td>
<td>283</td>
<td>50,0</td>
<td>0,268</td>
</tr>
<tr>
<td>Propilene</td>
<td>47,0</td>
<td>365</td>
<td>45,6</td>
<td>0,276</td>
</tr>
<tr>
<td>Butene-1</td>
<td>6,26</td>
<td>420</td>
<td>39,7</td>
<td>0,276</td>
</tr>
<tr>
<td>Altri composti organici</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetilene</td>
<td>83,6 (a)</td>
<td>309</td>
<td>61,6</td>
<td>0,274</td>
</tr>
<tr>
<td>Acetone</td>
<td>56,5</td>
<td>509</td>
<td>46,6</td>
<td>0,237</td>
</tr>
<tr>
<td>Acido acetico</td>
<td>118,1</td>
<td>595</td>
<td>51,1</td>
<td>0,200</td>
</tr>
<tr>
<td>Alcool etilico</td>
<td>78,5</td>
<td>516</td>
<td>63,0</td>
<td>0,249</td>
</tr>
<tr>
<td>Alcool metilico</td>
<td>64,65</td>
<td>513</td>
<td>78,5</td>
<td>0,220</td>
</tr>
<tr>
<td>Benzene</td>
<td>80,099</td>
<td>562</td>
<td>48,6</td>
<td>0,274</td>
</tr>
<tr>
<td>Butadiene-1,3</td>
<td>4,41</td>
<td>425</td>
<td>42,7</td>
<td>0,270</td>
</tr>
<tr>
<td>Cicloesano</td>
<td>81,4</td>
<td>553</td>
<td>40,0</td>
<td>0,271</td>
</tr>
<tr>
<td>Cloruro di metile</td>
<td>24,22</td>
<td>416</td>
<td>65,9</td>
<td>0,276</td>
</tr>
<tr>
<td>Diclorodifluoro metano (Freon-12)</td>
<td>28</td>
<td>385</td>
<td>39,6</td>
<td>0,273</td>
</tr>
<tr>
<td>Etere dietilico</td>
<td>34,6</td>
<td>467</td>
<td>35,6</td>
<td>0,261</td>
</tr>
<tr>
<td>Metiletilketone (2-butanone)</td>
<td>79,6</td>
<td>533</td>
<td>39,5</td>
<td>0,26</td>
</tr>
<tr>
<td>Ossido di etilene</td>
<td>10,7</td>
<td>465</td>
<td>71,0</td>
<td>0,25</td>
</tr>
<tr>
<td>Toluene</td>
<td>110,626</td>
<td>594</td>
<td>41,6</td>
<td>0,27</td>
</tr>
<tr>
<td>Triclorofluorometano (Freon-11)</td>
<td>24,1</td>
<td>471</td>
<td>43,2</td>
<td>0,277</td>
</tr>
<tr>
<td>Triclorotrifluorometano (Freon-113)</td>
<td>45,8</td>
<td>487</td>
<td>33,7</td>
<td>0,274</td>
</tr>
</tbody>
</table>

(Continua)
Fig. (1, IV) - Diagramma generalizzato del coefficiente di comprimibilità ($z = P/vRT$) dei gas e dei liquidi (per $z_e = 0.27$) (basse pressioni). (Tracciato utilizzando dati riportati da HOUGEN, WATSON e RAGATZ [40]).
<table>
<thead>
<tr>
<th>0°</th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
<th>4°</th>
<th>5°</th>
<th>6°</th>
<th>7°</th>
<th>8°</th>
<th>9°</th>
<th>10°</th>
<th>11°</th>
<th>12°</th>
<th>13°</th>
<th>14°</th>
<th>15°</th>
<th>16°</th>
<th>17°</th>
<th>18°</th>
<th>19°</th>
<th>20°</th>
<th>21°</th>
<th>22°</th>
<th>23°</th>
<th>24°</th>
<th>25°</th>
<th>26°</th>
<th>27°</th>
<th>28°</th>
<th>29°</th>
<th>30°</th>
<th>31°</th>
<th>32°</th>
<th>33°</th>
<th>34°</th>
<th>35°</th>
<th>36°</th>
<th>37°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
</tr>
</tbody>
</table>

Tabella del coefficiente D per l'effetto di x negli anni A. HANSE (1914).
Tabella 2, IV (Continua.)

<table>
<thead>
<tr>
<th>Elementi</th>
<th>T_{eb} °C</th>
<th>T_c °K</th>
<th>P_c, atm</th>
<th>z_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argo</td>
<td>185,7</td>
<td>151</td>
<td>48</td>
<td>0,291</td>
</tr>
<tr>
<td>Azoto</td>
<td>195,8</td>
<td>126</td>
<td>33,5</td>
<td>0,291</td>
</tr>
<tr>
<td>Bromo</td>
<td>58,78</td>
<td>375</td>
<td>102</td>
<td>0,307</td>
</tr>
<tr>
<td>Cloro</td>
<td>34,6</td>
<td>417</td>
<td>76,1</td>
<td>0,276</td>
</tr>
<tr>
<td>Elio</td>
<td>268,9</td>
<td>5,3</td>
<td>2,26</td>
<td>0,300</td>
</tr>
<tr>
<td>Idrogeno</td>
<td>252,8</td>
<td>33,3</td>
<td>12,8</td>
<td>0,304</td>
</tr>
<tr>
<td>Neon</td>
<td>245,9</td>
<td>44,5</td>
<td>26,9</td>
<td>0,307</td>
</tr>
<tr>
<td>Ossigeno</td>
<td>182,96</td>
<td>155</td>
<td>50,1</td>
<td>0,29</td>
</tr>
<tr>
<td>Mercurio</td>
<td>356,58</td>
<td>1718</td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

Altri composti inorganici

<table>
<thead>
<tr>
<th>Composto</th>
<th>T_f °C</th>
<th>T_f °C</th>
<th>P_f atm</th>
<th>z_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acido cloridrico</td>
<td>83,7</td>
<td>325</td>
<td>81,5</td>
<td>0,266</td>
</tr>
<tr>
<td>Acqua</td>
<td>100,000</td>
<td>647</td>
<td>218</td>
<td>0,23</td>
</tr>
<tr>
<td>Ammoniaca</td>
<td>33,35</td>
<td>406</td>
<td>111</td>
<td>0,242</td>
</tr>
<tr>
<td>Anidride carbonica</td>
<td>78,5 (b)</td>
<td>304</td>
<td>72,9</td>
<td>0,276</td>
</tr>
<tr>
<td>Anidride solforica</td>
<td>44,8 (c)</td>
<td>491</td>
<td>83,8</td>
<td>0,262</td>
</tr>
<tr>
<td>Anidride solforosa</td>
<td>10,0</td>
<td>430</td>
<td>77,8</td>
<td>0,268</td>
</tr>
<tr>
<td>Idrogeno solforato</td>
<td>61,8 (d)</td>
<td>374</td>
<td>88,9</td>
<td>0,284</td>
</tr>
<tr>
<td>Ossido di azoto (NO)</td>
<td>151,8</td>
<td>179</td>
<td>64</td>
<td>0,25</td>
</tr>
<tr>
<td>Ossido di carbonio</td>
<td>190</td>
<td>134</td>
<td>34,5</td>
<td>0,294</td>
</tr>
</tbody>
</table>

(a) sublima; T_f fusione: $-81,8$ °C.
(b) sublima; T_f fusione a 5,2 atm: $-56,5$ °C.
(c) T_f fusione: $16,83$ °C.
(d) T_f fusione: $-82,9$ °C.

La funzione (6, IV) può essere diagrammata per ciascun valore di z_c (vedi ad es. fig. (1, IV)).

I dati della fig. (1, IV), che sono ripresi da HOUGEN, WATSON e RAGATZ [40], sono direttamente applicabili alle sostanze per le quali $z_c = 0,27$. Per le sostanze il cui valore di z_c è diverso da 0,27, il calcolo del coefficiente di comprimibilità per una data coppia di valori T e P, si effettua, secondo HOUGEN, WATSON e RAGATZ, con la seguente relazione:

(7, IV) \[z = z' + D(z_c - 0,27); \]

ove:

z = coefficiente di comprimibilità cercato;

z' = coefficiente di comprimibilità corrispondente a $z_c = 0,27$, riportato nella fig. (1, IV), in corrispondenza di T_r e P_r.

\[D = D_a \circ D_b = \text{coefficienti riportati nella fig. (1, IV), da applicarsi rispettivamente se } z_c > 0,27 \text{ e } z_c < 0,27; \]

\(z_c = \text{coefficiente di comprimibilità in corrispondenza del punto critico per il gas considerato.} \)

![Diagram of gas deviations](image)

Fig. (2, IV) - Deviazione percentuale, dai valori sperimentali, dei coefficienti di comprimibilità dell’azoto e dell’etilene a 50 °C, calcolati con alcune equazioni di stato. (da Comings [12]).

I valori di \(D_a \) e \(D_b \) sono riportati solo fino a \(P_r = 1,2 \). Per valori di \(P_r > 1,2 \) si possono utilizzare i valori di \(D_a \) e \(D_b \) riportati per \(P_r = 1,2 \), solo se \(T_r > 1,2 \) o, per i liquidi, solo se \(T_r < 0,8 \). Per valori di \(T_r \) compresi tra 0,8 e 1,2 non si hanno dati sufficientemente precisi.

Dall’andamento delle curve riportate nella fig. (1, IV) si osserva che al diminuire della pressione \(z \) tende a 1. Si osserva anche che per ciascun valore di \(P_r, z \) tende ad 1 all’aumentare della temperatura. \(\dot{E} \) ben noto in effetti che per pressioni sufficientemente basse, o temperature sufficientemente elevate, qualsiasi gas tende a comportarsi in modo ideale. All’interno della curva di saturazione, per ciascun valore di \(T_r, z \) presenta una discontinuità in corrispondenza di un dato valore di \(P_r \).
Fig. (3,IV) - Diagramma generalizzato delle densità ridotte dei liquidi per $z_p = 0,27$ (basse pressioni). (Tracciato utilizzando dati riportati da HOUGEN, WATSON e RAGATZ [40]).
Per la fase gassosa z è inferiore a 1 per ciascun valore di T_r inferiore a 2 e per P_r inferiore a 8. Per $P_r > 8$, z è maggiore di 1.

Gli errori medi che si commettono applicando i dati della fig. (1, IV) dipendono dal tipo di gas considerato; generalmente vanno da zero per le basse pressioni, a 2,5% nella regione critica e a 2% alle alte pressioni.

I dati della figura (1, IV) possono anche essere applicati al calcolo della densità dei liquidi in diverse condizioni di T e P, ma tale grandezza si calcola in modo più preciso con il metodo che verrà descritto nel prossimo paragrafo.

In figura si possono anche leggere i valori di z relativi alle condizioni di saturazione; valori più dettagliati, relativi a queste condizioni, sono riportati da HOUGEN, WATSON e RAGATZ [40].

A titolo esemplificativo, nella fig. (2, IV) vengono riportate per due gas le deviazioni, rispetto ai valori sperimentali, del coefficiente di comprimibilità calcolato applicando diverse leggi di stato. Si osserva che il metodo degli stati corrispondenti dà luogo ai risultati più soddisfacenti, anche fino a valori relativamente elevati della pressione.

4. Densità dei liquidi puri. — La densità dei liquidi puri può essere valutata, per diversi valori di T e P, con l’ausilio dei dati riportati nel paragrafo precedente. Per questa via si ottengono però, il più delle volte, valori solo grossolanamente approssimati. Valori più precisi si possono ottenere nota la densità del liquido considerato in corrispondenza di una coppia di valori di T e P, e note le densità ridotte; quest’ultima grandezza essendo definita dalla relazione:

\[(8, IV)\]

\[\varrho_r = \frac{\varrho}{\varrho_c};\]

ove:

\[\varrho_r = \text{densità ridotta};\]
\[\varrho = \text{densità nelle condizioni considerate};\]
\[\varrho_c = \text{densità critica}.\]

I valori di ϱ_r sono riportati, in funzione di T_r e P_r, nella fig. (3, IV), per $z_c = 0.27$. I dati relativi a sostanze per le quali $z_c \neq 0.27$, si calcolano con l’ausilio dei parametri D_a e D_b diagrammati nella fig. (3, IV) applicando, per il calcolo di ϱ_r, una relazione simile alla (7, IV).

Ad esempio, il calcolo della densità ϱ_2 a T_2 e P_2, nota la densità ϱ_1 a T_1 e P_1 si effettua con la relazione:

\[(9, IV)\]

\[\frac{\varrho_2}{\varrho_{r_2}} = \frac{\varrho_1}{\varrho_{r_1}} = \varrho_c.\]
Poiché le densità ridotte ϱ_1 e ϱ_2 sono note (dalla figura (3, IV)), ϱ_2 può essere calcolato anche se non è noto ϱ_r.

5. Coefficienti di fugacità generalizzati per gas puri. — La fugacità (P^*) di un gas puro è legata alla pressione (P) dalla seguente relazione, che definisce il coefficiente di fugacità:

$$P^* = \varphi P.$$

(10, IV)

Il coefficiente di fugacità di un dato gas a T e P, si può calcolare conoscendo i coefficienti di comprimibilità del gas considerato, per l'intervallo di pressione 0, P e alla T considerata.

In effetti, per un gas puro, sussiste la seguente relazione (vedi equazioni (45, I) e (49, I)):

$$\left(\frac{d P^*}{P^*} = \frac{v}{R T} d P \right)_T.$$

(11, IV)

Combinando le (2, IV), (10, IV) e (11, IV) si ottiene:

$$d \ln \varphi = (z - 1) \frac{d P}{P}.$$

(12, IV)

Integrando a partire da $P = P_e$ (P_e essendo sufficientemente piccolo in modo che il gas abbia comportamento ideale — ossia affinché si abbia $z_e = 1$ e $\varphi_e = 1$), risulta:

$$\ln \varphi = \int_{P_e}^{P} \left(z - 1 \right) \frac{d P}{P}.$$

(13, IV)

Pertanto, anche i coefficienti di fugacità, analogamente a quanto visto per i coefficienti di comprimibilità, possono essere valutati con l'ausilio di diagrammi o tabelle, validi per tutti i gas, e nei quali φ è riportato in funzione di T_r, P_r e z_e.

I valori di φ sono riportati, per $z_e = 0,27$, nella fig. (4, IV).

I valori di φ relativi a sostanze per le quali $z_e \neq 0,27$ si calcolano, secondo Hougén, Watson e Ragatz, applicando la relazione:
Fig. (4, IV) - Diagramma generalizzato del coefficiente di fugacità dei gas e dei liquidi per $z_c = 0,27$ (basse pressioni). (Tracciato utilizzando dati riportati da HUGEN, WATSON, e RAGAZZI [40]).
Tabella dei coefficienti D_a e D_b per il calcolo di τ per $\gamma \neq 0.27$ (da HOUHEN, WATSON, e RAGAZZI [40]).

<table>
<thead>
<tr>
<th>τ</th>
<th>$P_\tau = 0.20$</th>
<th>$P_\tau = 0.30$</th>
<th>$P_\tau = 0.40$</th>
<th>$P_\tau = 0.50$</th>
<th>$P_\tau = 0.60$</th>
<th>$P_\tau = 0.70$</th>
<th>$P_\tau = 0.80$</th>
<th>$P_\tau = 0.90$</th>
<th>$P_\tau = 1.00$</th>
<th>$P_\tau = 1.05$</th>
<th>$P_\tau = 1.10$</th>
<th>$P_\tau = 1.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_a</td>
<td>D_b</td>
<td>D_a</td>
<td>D_b</td>
<td>D_a</td>
<td>D_b</td>
<td>D_a</td>
<td>D_b</td>
<td>D_a</td>
<td>D_b</td>
<td>D_a</td>
<td>D_b</td>
<td>D_a</td>
</tr>
<tr>
<td>0.50</td>
<td>8.81</td>
<td>15.80</td>
<td>10.00</td>
<td>15.80</td>
<td>10.10</td>
<td>15.70</td>
<td>10.10</td>
<td>15.80</td>
<td>0.80</td>
<td>5.80</td>
<td>8.80</td>
<td>5.55</td>
</tr>
<tr>
<td>0.60</td>
<td>2.90</td>
<td>5.90</td>
<td>2.90</td>
<td>5.90</td>
<td>2.80</td>
<td>5.90</td>
<td>2.80</td>
<td>5.90</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>0.70</td>
<td>0.11</td>
<td>0.17</td>
</tr>
<tr>
<td>0.80</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>0.90</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>1.00</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>1.10</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>1.20</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>1.30</td>
<td>0.03</td>
<td>0.10</td>
</tr>
<tr>
<td>1.40</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>1.50</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>1.60</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>1.70</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>1.80</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>1.90</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>2.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>
(14, IV) \[\log \varphi = \log \varphi' + D(z_c - 0.27); \]

ove:

\(\varphi \) = coefficiente di fugacità cercato;

\(\varphi' \) = coefficiente di fugacità corrispondente a \(z_c = 0.27 \), riportato nella fig. (4, IV), in corrispondenza di \(T_r \) e \(P_r \).

\(D = D_a \) o \(D_b \) = coefficienti riportati nella fig. (4, IV), da applicarsi se \(z_c \) è rispettivamente maggiore o minore di 0.27.

Questi coefficienti si utilizzano tenendo presenti le stesse avvertenze viste per il calcolo dei coefficienti di comprimibilità.

Nei casi in cui \(\varphi/\varphi' \) è poco diverso dall’unità, la (14, IV) può essere sostituita con l’equazione:

(15, IV) \[\varphi = \varphi' [1 + 2.303 D(z_c - 0.27)]. \]

6. Influenza della pressione su: entalpia, energia interna, entropia e calore molare dei fluidi non ideali allo stato puro. — Le proprietà termodinamiche dei gas sono generalmente riportate nella letteratura per il gas supposto nel proprio stato ipotetico di riferimento (\(P^* = P = 1 \) atm) e per alcuni valori della temperatura. Come è già stato osservato, in questo stato, le proprietà intensive sono uguali a quelle del gas alla stessa temperatura, ma ad una pressione tendente a zero, in condizioni cioè in cui il gas si comporta idealmente.

Anche nel caso dei liquidi, i dati riportati sono generalmente quelli corrispondenti alla pressione atmosferica.

Alcuni metodi di valutazione di grandezze termodinamiche (\(c_p^0, \Delta H^0, \Delta G^0 \)) per gas ideali e per liquidi puri a bassa pressione o all’ebollizione, sono stati riportati nel capitolo II.

Il calcolo di alcune grandezze termodinamiche dei gas ideali ad una data temperatura, noto il valore della proprietà corrispondente ad un’altra temperatura e noto il calore molare del gas in funzione della temperatura, si può effettuare con le equazioni (151-153, I).

Per valutare l’influenza della pressione sulle proprietà termodinamiche dei fluidi puri, si dispone di metodi di calcolo generalizzati. Con tali metodi si valuta lo scostamento del valore delle singole grandezze relative al fluido reale, rispetto al valore corrispondente allo stesso gas supposto ideale alla stessa temperatura.

Il calcolo dei suddetti scostamenti richiede, in ultima analisi, la conoscenza dei coefficienti di comprimibilità ed i parametri critici del gas in esame.

Ci limiteremo qui di seguito a riportare le relazioni ed i valori numerici necessari per effettuare alcuni dei calcoli in questione. Per la dimostrazione di queste relazioni si rimanda ad esempio a HOUGEN, WATSON e RAGATZ [40].
Le seguenti equazioni si riferiscono tutte a condizioni isoterme.

Entalpia:

\[
\frac{h^0 - h}{T_c} = R T_c^2 \int_0^{P_r} \left(\frac{\partial z}{\partial T_r} \right)_{P_r} \frac{dP_r}{P_r}.
\]

Energia interna

\[
\frac{u^0 - u}{T_c} = \frac{h^0 - h}{T_c} -(1 - z) R T_r.
\]

Entropia

\[
\begin{align*}
\left\{
\begin{array}{l}
s_P^0 - s_P & = -R \int_0^{P_r} \frac{(1 - z) dP_r}{P_r} + R T_r \int_0^{P_r} \left(\frac{\partial z}{\partial T_r} \right)_{P_r} \frac{dP_r}{P_r}:
\end{array}
\right.
\end{align*}
\]

\[
\left\{
\begin{array}{l}
s_P^0 - s_P & = \frac{h^0 - h}{T_c T_r} + R \ln \varphi.
\end{array}
\right.
\]

Calore molare:

\[
\left(\frac{\partial}{\partial T_r} \left(\frac{h - h^0}{T_c} \right) \right)_{P_r} =
\]

\[
= -R T_r \int_0^{P_r} \left[T_r \left(\frac{\partial^2 z}{\partial T_r^2} \right)_{P_r} - 2 \left(\frac{\partial z}{\partial T_r} \right)_{P_r} \right] dP_r.
\]

ove:

- P_r, T_r, P_c, T_c = rispettivamente pressione ridotta, temperatura ridotta, pressione critica e temperatura critica della sostanza in esame;
- z, φ = rispettivamente coefficiente di comprimibilità e coefficiente di fugacità del gas in esame;
- s_P e s_P^0 = entropia molare del gas alla pressione P, rispettivamente nello stato reale e ideale;
- 0 = indice che si riferisce alla proprietà termodinamica del gas supposto ideale (per le grandezze intensive: per $P \to 0$).

Le relazioni (16-19, IV) sono applicabili anche ai liquidi. In questo caso, i termini che compaiono a sinistra delle equazioni, rappresentano la differenza tra le grandezze corrispondenti alla sostanza in esame allo stato gassoso ideale, e rispettivamente allo stato liquido, nelle condizioni di T e P considerate.
Fig. (5,IV) - Diagramma generalizzato dello scostamento dal valore ideale, dell'entalpia dei fluidi reali (per \(z_e = 0.27 \)) (basse pressioni). (Tracciato utilizzando dati riportati da HOUGEN, WATSON e RAGATZ [40]).
I valori numerici delle differenze che compaiono nelle precedenti equazioni, ripresi da Hougèn, Watson e Ragatz sono diagrammati (per \(z_c = 0,27 \)) nelle figure (5-8, IV). Dati più dettagliati per le grandezze \((u^0 - u)/T_c\) e \((s^0_\rho - s_\rho)\) sono riportati da Hougèn Watson e Ragatz [40].

Per le sostanze per le quali \(z_c \neq 0,27 \), il calcolo della grandezza cercata si effettua analogamente a quanto è stato visto in precedenza per altre proprietà generalizzate e precisamente, indicando con \(A \) uno qualunque dei termini che compare al primo membro delle (16-18, IV):

\[
A = A' + D(z_c - 0,27);
\]

ove:

\(A \) = valore cercato;

\(A' \) = valore corrispondente a \(z_c = 0,27 \) riportato nelle figure in corrispondenza di \(T_c \) e \(P_c \);

\(D = D_a \) o \(D_b \) (vedi fig. (5, IV)) se \(z_c \) è rispettivamente maggiore o minore di 0,27; questi coefficienti si applicano seguendo le stesse avvertenze viste per il calcolo dei coefficienti di comprimibilità.

Fig. (6, IV) - Diagrammi generalizzati dello scostamento dal valore ideale, dell'energia interna dei fluidi reali (per \(z_c = 0,27 \)) (da Hougèn, Watson e Ragatz [40]).
Nelle figure sopra citate sono riportate anche le proprietà termodinamiche relative alla sostanza in esame allo stato liquido e in condizioni di saturazione, sia per il vapore che per il liquido. Si può osservare che la discontinuità all’interno della curva limite del diagramma ($h^o - \bar{h}$)/T_c corrisponde al calore latente di vaporizzazione diviso per T_c. Altri dati più dettagliati relativi alle condizioni di saturazione sono riportati da HOUGEN, WATSON e RAGATZ [40].

Per quanto riguarda l’approssimazione raggiungibile con i dati riportati in questo paragrafo, si deve osservare che non sarà la stessa per tutte le grandezze considerate e che in particolare, per l’entalpia, l’entropia ed il calore molare, sarà in generale inferiore a quella relativa ai coefficienti di comprimibilità. In effetti, tutte le deviazioni dal comportamento ideale relative alle grandezze considerate, si valutano a partire dai coefficienti di comprimibilità con equazioni (come le (16, IV), (18, IV) e (19, IV)) che implicano derivazioni e integrazioni. Si deve tuttavia tener presente che gli errori in questione si riferiscono alla differenza tra il valore della proprietà del gas supposto ideale ed il valore della stessa proprietà per il gas reale; l’errore assoluto con il quale si valuta la funzione termodinamica del gas reale, dipende anche dal valore della grandezza in esame per il gas ideale.

Osserveremo infine che il calcolo delle proprietà termodinamiche dei liquidi, con i dati riportati in questo paragrafo, è in molti casi poco preciso. Ad esempio, i calori di vaporizzazione, l’entalpia, l’entropia e l’energia interna dei liquidi a di-
Fig. (8, IV) - Diagramma generalizzato dello scostamento dal valore ideale, del calore molare dei fluidi reali (per $z_s = 0,27$) (da Hougên, Watson e Ragatz [40]).
diverse temperature, si calcolano con maggiore precisione utilizzando i dati \((\Delta H_{\text{f}}), c_v e c_p\) riportati nel capitolo II.

I dati delle fig. (5-8, IV) possono essere invece vantaggiosamente utilizzati per valutare l'influenza della pressione sulle suddette proprietà termodinamiche dei liquidi. Tale influenza, peraltro, diventa generalmente apprezzabile solo a pressioni elevate.

7. Valutazione delle proprietà termodinamiche per sistemi gassosi non ideali a più componenti. — Le proprietà termodinamiche globali di un sistema gassoso non ideale, o di un dato componente del sistema, dipendono, a priori, dalla temperatura, dalla pressione, dalla composizione e dalla natura di tutti i componenti del sistema.

Si comprende quindi come il calcolo esatto delle suddette proprietà si possa effettuare solamente con l’ausilio di dati sperimentali (ad es. dati \(P, V e T\) e calori molarì) relativi al sistema in esame. Questi dati sperimentali sono d’altra parte raramente disponibili. In altri termini, non si dispone di metodi di calcolo aventi validità sufficientemente generale, che consentano di valutare in tutti i casi, con buona approssimazione, le proprietà termodinamiche di tutti i sistemi gassosi non ideali a più componenti che si possono riscontrare in pratica.

Questi calcoli si possono però effettuare se il sistema considerato segue con sufficiente approssimazione una opportuna legge. Ad es., si osserva sperimentalmente che taluni sistemi gassosi seguono con approssimazione soddisfacente, o la legge di additività dei volumi (legge di AMAGAT), o la legge di additività delle pressioni (legge di DALTON). In questi casi, i calcoli di alcune grandezze termodinamiche sono relativamente semplici. In altri casi, i calcoli possono essere effettuati con il cosiddetto metodo delle condizioni pseudocritiche.

Oltre a questi metodi, ne esistono altri più complessi che non verranno presi qui in considerazione.

Prima di discutere i diversi metodi di calcolo, è opportuno ricordare che le proprietà termodinamiche che devono essere note per studiare talune caratteristiche dei sistemi gassosi reali, o degli equilibri chimici tra gas reali, si possono distinguere in:

- proprietà del sistema globale;
- proprietà di ciascun componente del sistema.

Al primo gruppo appartengono ad es. il calore specifico della miscela, il coefficiente di comprimibilità della miscela, l'entalpia del sistema ecc.; al secondo gruppo appartengono ad es. il coefficiente di fugacità, il volume parziale molare, ecc., di ciascun componente del sistema nelle condizioni del sistema.
Nei prossimi paragrafi vengono riportate le relazioni che possono essere utilizzate per effettuare il calcolo delle suddette proprietà. Successivamente, verranno discussi alcuni criteri che consentono di prevedere il metodo di calcolo più opportuno, da applicarsi volta per volta ai diversi casi che si possono incontrare in pratica.

8. Miscelle gassose ideali e non ideali - Legge di Amagat. — Nel primo capitolo è stato ricordato che una soluzione o miscela (di gas, liquidi o solidi) si definisce ideale quando in particolare segue la legge di additività dei volumi; ossia quando il volume del sistema è uguale alla somma dei volumi che ciascun componente occuperebbe se fosse sottoposto allo stato puro alla pressione totale P del sistema (legge di Amagat):

\[V = \sum_i V'_i; \]

ove:

V = volume totale del sistema;

V'_i = volume che occuperebbe il gas i se fosse sottoposto allo stato puro alla pressione P e alla temperatura T del sistema.

Da questa legge si possono dedurre diverse relazioni relativamente semplici per il calcolo delle proprietà termodinamiche dei sistemi gassosi che danno luogo a miscele ideali.

Coefficiente di comprimibilità

Per il calcolo del coefficiente di comprimibilità della miscela, tenuta presente la (21, IV), si possono scrivere le seguenti relazioni:

\[V = \sum_i V'_i = \sum_i z_i n_i R T / P; \]

\[P V = P \left(\sum_i z_i n_i \frac{RT}{P} \right) = z_m n RT; \]

\[z_m = \sum_i \frac{z_i n_i}{n} = \sum_i x_i z_i'; \]
ove:
\[z_m = \text{coefficiente di comprimibilità della miscela;} \]
\[z_{i}^{q} = \text{coefficiente di comprimibilità del componente } i \text{ allo stato puro gassoso alle } T \text{ e } P \text{ del sistema;} \]
\[n_i \text{ e } n = \text{rispettivamente } \text{n}° \text{ di moli di } i \text{ e numero totale di moli contenute nel sistema;} \]
\[x_i = \text{frazione molare di } i \text{ nella miscela.} \]

Ciascun valore di \(z_{i}^{q} \) che compare nella (24, IV) si calcola con l’ausilio dei diagrammi generalizzati riportati per i gas puri, entrando in detti diagrammi in corrispondenza della temperatura ridotta: \(T_{r,i} = T/T_{c,i} \) e della pressione ridotta: \(P_{r,i} = P/P_{c,i} \); ove \(T_{c,i} \) e \(P_{c,i} \) sono rispettivamente la temperatura critica e la pressione critica del componente \(i \); \(P \) è la pressione totale del sistema.

Relazioni analoghe alla (24, IV) si deducono per altre grandezze termodinamiche molari, relative ai sistemi che seguono la legge di additività dei volumi per l’intero campo di pressione 0, \(P \); in effetti, per le miscele ideali, le grandezze parziali molari intensive sono indipendenti dalla composizione del sistema. Si ottiene quindi:

Entalpia

(25, IV) \[h_m = \sum_i x_i h_i^q \]

ove:
\[h_m = \text{entalpia media molare della miscela;} \]
\[h_i^q = \text{entalpia molare del gas } i \text{ allo stato puro gassoso alla } T \text{ e } P \text{ del sistema.} \]

Quest’espressione esprime che il processo di mescolanza a \(P \) costante di gas che danno luogo ad una miscela ideale è atermico.

Energia interna:

(26, IV) \[u_m = \sum_i x_i u_i^q \]

Calore molare:

(27, IV) \[c_{P,m} = \sum_i x_i c_{P,i}^q \]

ove:
\[c_{P,i}^q = \text{calore molare di } i \text{ a } P \text{ costante, allo stato puro alla } T \text{ e } P \text{ del sistema.} \]
Entropia

Nel calcolo dell'entropia di una miscela (anche se costituita da gas ideali) si deve tener conto dell'entropia di mescolanza. Si ottiene:

\begin{equation}
(28, \text{ IV}) \quad s_m = \sum_i x_i s_i^i = R_i x_i \ln x_i.
\end{equation}

s_i^i = entropia molare del gas i allo stato puro alla T e P del sistema.

Coefficiente di fugacità.

Ricordiamo che il coefficiente di fugacità di un gas in miscela con altri è definito dalla seguente relazione:

\begin{equation}
(29, \text{ IV}) \quad \varphi_i = \frac{P_i^*}{P_i} = \frac{P_i^*}{x_i P}.
\end{equation}

ove:

P_i^*, φ_i, x_i e P_i = rispettivamente fugacità, coefficiente di fugacità, frazione molare e pressione parziale di i nel sistema;

P = pressione totale.

Nel capitolo I si è dimostrato (vedi eq. (79, I)) che la fugacità di ciascun componente di un sistema che segue la legge di additività dei volumi per l'intero campo di pressioni 0, P, è uguale alla fugacità del gas allo stato puro alla pressione del sistema, moltiplicato per la frazione molare del componente considerato:

\begin{equation}
(30, \text{ IV}) \quad P_i^* = \varphi_i P_i = \varphi_i x_i P = x_i P_i^* = x_i \varphi_i^i P;
\end{equation}

ossia:

\begin{equation}
(31, \text{ IV}) \quad \varphi_i = \varphi_i^i;
\end{equation}

ove:

P_i^*, x_i e φ_i = rispettivamente: fugacità, frazione molare e coefficiente di fugacità del componente i nella miscela;

P = pressione totale;

$P_i^* = \varphi_i$ = rispettivamente: fugacità e coefficiente di fugacità del componente i allo stato puro gassoso alla T e P del sistema.

Si deve osservare che in base a questa ipotesi (che prende anche il nome di ipotesi di Lewis e Randall) il valore del coefficiente di fugacità è indipendente dalla composizione del sistema. Ciò deriva dal fatto che le miscelle che seguono la legge di additività dei volumi sono miscelle ideali (nel senso ricordato nel capitolo I), anche se sono costituite da gas non ideali.
Per le miscele non ideali, la (30, IV) e la (31, IV) possono essere così modificate:

\[(32, \text{IV}) \quad P^*_i = \varphi_i x_i P = \gamma_i x_i P^*_i = \gamma_i x_i \varphi^{\prime}_i \]

esendo:

\[(33, \text{IV}) \quad \varphi_i = \gamma_i \varphi^{\prime}_i; \]

ove:

\[\gamma_i = \text{coefficiente di attività di «} i \text{» nel sistema considerato.}\]

Il coefficiente \(\varphi^{\prime}_i\) che compare in queste equazioni si può valutare con l’aiuto dei diagrammi generalizzati relativi ai gas puri.

Anche per il calcolo del coefficiente di attività, sono stati proposti alcuni metodi generalizzati, che verranno ricordati in un prossimo volume, nel capitolo dedicato agli equilibri liquido-vapore; il campo di applicabilità di questi metodi è tuttavia ristretto a sistemi particolari ed il loro interesse è praticamente limitato allo studio degli equilibri fisici liquido-vapore.

La discussione relativa all’applicabilità della legge di additività dei volumi ai diversi casi che si possono presentare e le previsioni che si possono fare al riguardo, verranno riportate in un prossimo paragrafo, dopo che saranno stati descritti gli altri metodi di calcolo.

\textbf{9. Applicazione della legge di Dalton.} — Un sistema gassoso segue la legge di Dalton quando la sua pressione \((P)\) è uguale alla somma delle pressioni \((P'_i)\) che eserciterebbe ciascun gas contenuto nella miscela se occupasse da solo l’intero volume del sistema:

\[(34, \text{IV}) \quad P = \sum_i P'_i.\]

È opportuno ricordare che i sistemi gassosi ideali seguono sia la legge di Amagat che la legge di Dalton; per i sistemi ideali risulta:

\[(35, \text{IV}) \quad P'_i = P_i = \frac{n_i}{\sum_i n_i} P = x_i P;\]

ove:

\[n_i/\sum_i n_i = x_i/n = x_i = \text{frazione molare del componente «} i \text{» nel sistema.}\]

Per i gas reali, la (35, IV) non è più verificata. Si definisce tuttavia ancora «pressione parziale» la grandezza:

\[(36, \text{IV}) \quad P_i = x_i P.\]

Pertanto, per i sistemi gassosi reali, la pressione parziale di un dato componente della miscela, non è uguale alla pressione \((P'_i)\) che il gas eserciterebbe se occupasse da solo il volume \(V\) del sistema.
Le proprietà dei sistemi gassosi che seguono la legge di Dalton, si calcolano con le seguenti relazioni:

Coefficiente di comprimibilità della miscela

A partire dalla (34, IV) si ottiene:

\[(37, IV)\quad P = \sum_i P_i' = \sum_i (z_i') P_i' n_i \frac{RT}{V}\]

\[(38, IV)\quad PV = \left(\sum_i (z_i') P_i' n_i \frac{RT}{V}\right) V\]

Ossia:

\[(29, IV)\quad z_m = \sum_i (z_i') P_i' n_i / n = \sum_i x_i (z_i') P_i'\]

Ove:

\((z_i') P_i'\) = coefficiente di comprimibilità del componente «i» allo stato puro, alla temperatura del sistema e alla pressione \(P'\) che il gas eserciterebbe se occupasse da solo l’intero volume del sistema.

Si deve osservare che le pressioni \(P_i'\) non sono a priori note. In questo caso, il calcolo deve essere condotto per approssimazioni successive. In un primo tentativo si calcola (con l’ausilio dei diagrammi generalizzati riportati per i gas puri) il coefficiente di comprimibilità \(z_i\) per ciascun componente, supposto puro, alla pressione \(P_i = x_i P\). Con questi valori si calcola un primo valore approssimato del coefficiente di comprimibilità \(z_m\) della miscela, con la relazione: \(z_m = \sum x_i z_i\). Con i valori di \(z_i\) e \(z_m\) così calcolati in prima approssimazione, si calcola una seconda serie di valori \(P_i = x_i z_i P / z_m\). Si ripete quindi il calcolo di \(z_i\) con l’ausilio di quest’ultima serie di valori di \(P_i\). Il calcolo procede finché il valore di \((P_i')\) trovato nell’ultimo tentativo coincide con quello trovato nel penultimo tentativo \((P_i' = P_i)\).

Fugacità e coefficiente di fugacità, di ciascun componente della miscela.

Si dimostra che, se un sistema segue la legge di Dalton per l’intero campo di pressioni 0, \(P\), la fugacità effettiva di ciascun componente della miscela è uguale alla fugacità che avrebbe il componente considerato allo stato puro, se occupasse da solo l’intero volume del sistema alla temperatura del sistema; ossia:

\[(40, IV)\quad P_i^* = \varphi_i x_i P = (\varphi_i z_i P_i' P_i)\]

Ove:

\(P_i^*, \varphi_i, \ x_i\) = rispettivamente: fugacità, coefficiente di fugacità e frazione molare di «i» nella miscela;
\[(P_i^s)_{P_i^i} \quad (P_i^p)_{P_i^j} = \text{rispettivamente: fugacità e coefficiente di fugacità del componente } i \text{ allo stato puro alla } T \text{ del sistema e alla pressione } P_i' \text{ che } i \text{ eserciterebbe se occupasse da solo l’intero volume del sistema.} \]

Si deve osservare che \(\varphi_i \neq (\varphi_i^p)_{P_i^j} \) solamente se \(x_i P = P_i' \) risulta: \(\varphi_i \simeq \approx (\varphi_i^p)_{P_i^j}. \)

Dopo aver calcolato \(P_i^s \), il calcolo di \(\varphi_i \) se necessario, si effettua con la relazione \(\varphi_i = P_i^p/x_i P \), essendo noto \(x_i. \)

L’equazione (40, IV) non è di immediata applicazione come la (31, IV), poiché il valore della pressione \(P_i' \) non è noto a priori. Questa pressione, come è stato sopra riportato, può essere calcolata mediante approssimazioni successive.

Tuttavia, se il sistema considerato segue solo approssimativamente la legge di DALTON, anziché utilizzare la pressione \(P_i' \) per calcolare la pressione ridotta (che consentirà di valutare il coefficiente di fugacità con l’ausilio dei diagrammi generalizzati), si può utilizzare la pressione parziale \(P_i = x_i P \); la stessa osservazione può essere tenuta presente anche per il calcolo del coefficiente di comprimibilità medio della miscela.

Altre proprietà termodinamiche

Le altre proprietà termodinamiche delle miscele gassose reali che seguono la legge di additività delle pressioni per l’intero campo di pressioni 0, \(P \), si calcolano con relazioni analoghe alle (25-27, IV) sostituendo le proprietà relative ai gas puri, alla pressione totale del sistema, con le stesse proprietà, relative a ciascun componente, misurate alla pressione \(P_i' \) sopra definita.

10. Metodo delle condizioni pseudocritiche. — Analogamente a quanto si verifica per i gas reali allo stato puro, ci si può aspettare che una miscela di gas reali si possa studiare con sufficiente approssimazione con metodi generalizzati, mediante l’introduzione di opportune condizioni ridotte; a differenza di quanto visto per i gas puri, si osserva però che queste condizioni ridotte non sono riferite al vero punto critico della miscela.

Si consideri ad es. il diagramma \(P, T \) di un sistema a due componenti (fig. (9, IV)).

La curva \(B \text{ E C F H} \) rappresenta la curva limite per il sistema etano-\(n \)-eptano di composizione assegnata, e le curve \(B_1 C_{2n}H, \) e \(B_2 C_{2n}H \), le curve di tensione di vapore rispettivamente dell’etano puro e del \(n \)-eptano puro.

Tutte le altre curve, corrispondenti a composizioni diverse, sono contenute entro la curva inviluppo tratteggiata.

Il tratto di curva \(B \text{ E C} \) divide le regioni liquido-liquido vapore, ed il tratto di curva \(C \text{ F H}, \) le regioni liquido vapore-vapore. L’area sopra la linea \(B \text{ E C} \) corrisponde alla fase liquida, mentre l’area a destra della linea \(C \text{ F H} \) corrisponde alla fase vapore e alla fase gassosa.
Il punto C è il punto critico del sistema, ossia quel punto della curva limite (ed anche della curva inviluppo) in corrispondenza del quale non sono più distinguibili la fase liquida e la fase vapore.

La temperatura massima al di sopra della quale non è possibile liquefare il gas, non corrisponde al punto critico C bensì al punto F.

![Diagramma P, T per il sistema a due componenti](image)

Fig. (9, IV) - Diagramma P, T per il sistema a due componenti:
etano = 58,7% mol; n- eptano = 41,3% mol. (da **Barr-David** [2]).

La pressione al di sopra della quale il liquido non può essere vaporizzato (per \(T > T_c\)) corrisponde al punto E. (1)

Supponiamo ora che il sistema gassoso considerato si possa rappresentare in coordinate generalizzate e postuliamo l’esistenza di un gas puro che, nella regione corrispondente al vapore surriscaldato, abbia le stesse coordinate generalizzate del sistema gassoso in esame. Il punto critico di questo gas fittizio non sarà necessariamente il punto critico del sistema a due componenti e neppure il punto E od il punto F.

In pratica si osserva — sperimentalmente — che esiste effettivamente un punto avente approssimativamente queste caratteristiche; tale punto si trova all’interno della curva limite B E C F H.

Le considerazioni sopra riportate si possono estendere ai sistemi gassosi a più di due componenti.

Le coordinate del punto di riferimento sopra definito, si possono precisare cercando per tentativi le condizioni ridotte (di \(T'\) e \(P\)) che permettono, con l’ausilio dei diagrammi generalizzati introdotti per i gas puri, di ottenere risultati

(1) Non sempre per tutti i sistemi il punto C cade tra i punti E e F.
il più vicino possibile ai dati sperimentali. È stato tuttavia osservato da Kay [44] che si ottengono risultati soddisfacenti, assumendo come condizione di riferimento di una data miscela, i seguenti valori:

\[
T'_e = \sum x_i T_{e,i}; \\
P'_e = \sum x_i P_{e,i}; \\
z'_e = \sum x_i z_{e,i};
\]

ove:

\(x_i, T_{e,i}, P_{e,i}, e z_{e,i}\) = rispettivamente frazione molare, temperatura, critica, pressione critica e coefficiente di comprimibilità critici di \(i\).

Altri Autori hanno proposto altre relazioni (peraltro spesso complesse) per la valutazione di altri parametri critici di riferimento. (Si vedano, ad esempio, Hougén, Watson e Raggatz [49]).

I parametri \(T'_e, P'_e e z'_e\) prendono il nome rispettivamente di temperatura, pressione e coefficiente di comprimibilità pseudocritici.

Il metodo delle condizioni pseudocritiche consente di valutare approssimativamente, con l’impiego degli stessi diagrammi generalizzati visti per i gas puri, i coefficienti di comprimibilità e di fugacità del sistema globale, entrando in questi diagrammi in corrispondenza dei valori \(T'_e = T/T'_e\) e \(P'_e = P/P'_e\). Allo stesso modo si calcolano le differenze tra le proprietà termodinamiche medie \((h, u, s, c_p)\) relative al sistema supposto ideale.

Per quanto riguarda il calcolo delle proprietà termodinamiche di ciascun componente della miscela con il metodo delle condizioni pseudocritiche, ci limiteremo qui a riportare l’equazione di Joffe [42], applicabile a miscele di due o più componenti, per il calcolo dei coefficienti di fugacità:

\[
ln \varphi_i = ln \varphi_m + \frac{h_m^o - h_m}{RT T_e} (T'_e - T_{e,i}) + \frac{(z_m - 1) (P'_e - P_{e,i})}{P'_e};
\]

ove:

\(\varphi_i\) = coefficiente di fugacità cercato del componente \(i\) nel sistema considerato;

\(\varphi_m\) = coefficiente di fugacità della miscela, calcolato con il metodo delle condizioni pseudocritiche;

\(h_m^o\) = entalpia molare della miscela gassosa supposta ideale;

\(h_m\) = entalpia molare della miscela gassosa nelle condizioni considerate;

\(T\) = temperatura del sistema;

\(T'_e, P'_e\) = rispettivamente temperatura e pressione pseudocritica del sistema calcolate, con il metodo di Kay;
$T_{c,i}$, $P_{c,i}$ = rispettivamente temperatura e pressione critica del componente i;

z_m = coefficiente di comprimibilità della miscela, calcolato con il metodo delle condizioni pseudocritiche.

11. Osservazioni sull’applicabilità dei predetti metodi al calcolo di proprietà di miscele di gas. — Per quanto riguarda l’applicabilità delle relazioni riportate nei paragrafi precedenti, ai diversi casi che si possono presentare in pratica, si deve subito precisare che non è possibile stabilire delle regole aventi validità del tutto generale. Il più delle volte è consigliabile procedere per analogia con casi noti.

Si deve inoltre osservare che un dato criterio non può essere applicato indifferentemente, dando luogo alla stessa approssimazione, al calcolo di qualunque proprietà di una data miscela di gas, per valori assegnati della temperatura e della pressione. In effetti, per poter calcolare il coefficiente di comprimibilità di una miscela, applicando la legge di AMAGAT o la legge di DALTON, è sufficiente che la miscela in esame segua la legge corrispondente alla T e alla P considerate; l’applicazione invece delle equazioni (25-28, IV), (31, IV), (40, IV) ecc., per il calcolo dell’entalpia, dell’energia interna, dell’entropia, dei calori molarì, delle fugacità ecc., richiede che il sistema in esame segua rispettivamente l’una o l’altra legge alla T del sistema e per l’intero campo di pressione 0, P, (anziché per il solo valore della pressione considerata) (vedi ad es. equazioni (13, IV) e (16-19, IV)). Questa ultima condizione, come viene mostrato più avanti, non è invece sempre verificata (vedi ad es. fig. (10, IV)).

In pratica, ben poche miscele gassose seguono rigorosamente o la legge di AMAGAT o la legge di DALTON; inoltre, nella migliore delle ipotesi, si potrà solo prevedere, a seconda della temperatura, della pressione, della natura dei componenti e della composizione del sistema, se una data miscela segue con maggior approssimazione una data legge piuttosto che un’altra. A questo riguardo si possono fare le seguenti osservazioni:

La legge di AMAGAT è verificata quando le interazioni tra molecole della stessa specie e quelle tra molecole di specie diversa che costituiscono il sistema, sono tra loro del tutto equivalenti. A priori, questa proprietà si riscontra per i sistemi costituiti da componenti tra loro molto simili, sia chimicamente che fisicamente.

Per miscele costituite da componenti tra loro diversi, la legge di AMAGAT può talvolta essere verificata solo per taluni intervalli di pressione.

Nella fig. (10, IV) vengono ad esempio riportati dati relativi alla miscela CO$_2$—n-C$_4$H$_{10}$ a 411 °K ($T_{c,CO_2} = 304$ °K; $P_{c,CO_2} = 72,9$ atm; $T_{c,n-C_4H_{10}} = 426$ °K; $P_{c,n-C_4H_{10}} = 36,0$ atm) e ad alcune pressioni.

Si osserva che la legge di AMAGAT è verificata alle pressioni più elevate, mentre non lo è alle pressioni più basse riportate nella figura. In generale, tuttavia,
quasi tutti i sistemi gassosi seguono la legge di Amagat quando la pressione ridotta di ogni componente è inferiore a 0,7-0,8. Ad esempio, a pressione atmosferica, tale legge è seguita dalla maggior parte delle miscele di gas o vapori.

![Diagram](image)

Fig. (10, IV) - Coefficiente di comprimibilità delle miscele gassose CO$_2$-n-C$_4$H$_{10}$ a $T = 138^\circ$C (da Lewis e Randall [56]).

Se la temperatura del sistema è relativamente bassa, l'applicazione della legge di additività dei volumi (in particolare per il calcolo dei coefficienti di fugacità) può dare luogo ad errori rilevanti. Ad esempio, se alcuni componenti della miscela considerata risultano liquidi, allo stato puro, alla T e P del sistema, è evidente che il loro coefficiente di fugacità nella miscela non sarà uguale al coefficiente di fugacità calcolabile per il componente puro alla T e P del sistema. In questi casi, la legge di Dalton può dare dei risultati più soddisfacenti. A questo riguardo, alcuni esempi vengono riportati più avanti.

Per ben comprendere le limitazioni di validità della legge di Dalton, si deve tener presente che essa non tiene conto, nel calcolo delle proprietà termodinamiche di ciascun componente di una data miscela, dell'influenza degli altri componenti. In generale, se la pressione è elevata (ad es. alcune centinaia di atmosfere) ben difficilmente questa condizione sarà verificata; se la pressione è limitata, l'interazione di talune specie (ad es. gas leggeri apolari o poco polari) con altre, può essere trascurata. Ad es. in un sistema contenente acido acetico e idrogeno, mantenuti in fase gassosa a qualche decima di atmosfera, l'influenza della presenza dell'idrogeno, sul coefficiente di fugacità dell'acido acetico, può essere trascurata, in prima approssimazione. Anche i sistemi argo-etilene, elio-vapor d'acqua, seguono la legge di Dalton per un ampio intervallo di pressione.
Da queste osservazioni, emergono notevoli limitazioni di applicabilità della legge di DALTON.

Si deve ancora notare che applicando questa legge, o la legge di AMAGAT, ciascuna proprietà termodinamica di ogni componente della miscela si calcola tenendo conto solamente delle caratteristiche del componente considerato allo stato puro, alla T del sistema e ad una opportuna pressione. Il metodo delle condizioni pseudocritiche (ed anche il metodo che contempla il calcolo dei coefficienti di attività (vedi eq. (33, IV)) tiene conto (in qualche modo) della natura di tutti i componenti del sistema; per questa ragione, nei casi in cui la legge di AGAMAT non si può ritenere valida, il metodo delle condizioni pseudocritiche sarà da preferirsi, il più delle volte, all’applicazione della legge di DALTON.

I risultati che si ottengono applicando il metodo delle condizioni pseudocritiche sono in molti casi soddisfacenti (soprattutto per miscele di idrocarburi), ma per miscele di gas che differiscono molto nei pesi molecolari, o nella natura chimica, questo metodo può dar luogo ad errori non sempre trascurabili.

Utilizzando determinazioni sperimentali effettuate da BARTLETT [4] si osserva che il coefficiente di comprimibilità medio di qualunque miscela N_2, H_2 calcolato applicando la legge di AMAGAT, per pressioni comprese tra 50 e 1000 atm e per $T = 0 \degree C$, differisce al massimo del 2,5% dal valore sperimentale.

Altri esempi sono riportati da SMITH e VAN NESS [90]:

Esempio 1.

Per una miscela costituita da:

- 40,1 moli di N_2 ($T_c = 126 \degree K$ e $P_c = 33,5$ atm);
- 59,9 moli di C_2H_4 ($T_c = 282 \degree K$ e $P_c = 50,0$ atm);

a $P = 600$ atm e $T = 50 \degree C$,

si ottengono i seguenti risultati:

<table>
<thead>
<tr>
<th></th>
<th>z_m</th>
<th>errore</th>
</tr>
</thead>
<tbody>
<tr>
<td>valore sperimentale</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td>legge di AMAGAT</td>
<td>$z_m = 1,40$; errore: 0%</td>
<td></td>
</tr>
<tr>
<td>legge di DALTON</td>
<td>$z_m = 0,925$; errore: $-33,8%$</td>
<td></td>
</tr>
<tr>
<td>metodo delle condizioni pseudocritiche</td>
<td>$z_m = 1,41$; errore: $+0,7%$</td>
<td></td>
</tr>
<tr>
<td>gas ideale</td>
<td>$z_m = 1$; errore: $-28,3%$</td>
<td></td>
</tr>
</tbody>
</table>
Esempio 2

Per una miscela costituita da:

<table>
<thead>
<tr>
<th></th>
<th>(T_c) (°K)</th>
<th>(P_c) (atm)</th>
<th>% mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4)</td>
<td>191</td>
<td>45,8</td>
<td>86,02</td>
</tr>
<tr>
<td>C(_2)H(_6)</td>
<td>305</td>
<td>48,2</td>
<td>7,70</td>
</tr>
<tr>
<td>C(_3)H(_8)</td>
<td>369</td>
<td>42,0</td>
<td>4,26</td>
</tr>
<tr>
<td>i-C(_4)H(_10)</td>
<td>407</td>
<td>37,0</td>
<td>0,57</td>
</tr>
<tr>
<td>n-C(_4)H(_10)</td>
<td>426</td>
<td>36,0</td>
<td>0,87</td>
</tr>
<tr>
<td>n-C(_5)H(_12)</td>
<td>470</td>
<td>33,3</td>
<td>0,25</td>
</tr>
<tr>
<td>n-C(_6)H(_14)</td>
<td>508</td>
<td>29,9</td>
<td>0,33</td>
</tr>
</tbody>
</table>

a \(P = 50 \) atm e \(T = 38 \) °C, si ottengono i seguenti risultati:

- valore sperimentale: \(z_m = 0,80 \)
- legge di Amagat: \(z_m = 0,80; \) errore: 0\%
- legge di Dalton: \(z_m = 0,90; \) errore: +12\%
- metodo delle condizioni pseudocritiche: \(z_m = 0,80; \) errore: 0\%
- gas ideale: \(z_m = 1; \) errore: +25\%.

Si può osservare che per la miscela considerata nel primo esempio, la legge di Amagat fornisce il miglior risultato, anche se la pressione è molto superiore alla pressione critica di ciascun componente ed anche se la temperatura del sistema è di poco superiore alla temperatura critica dell’etilene.

Anche per il sistema considerato nell’esempio 2, si ottengono buoni risultati nel calcolo di \(z_m \), applicando la legge di Amagat, o il metodo delle condizioni pseudocritiche, sebbene la temperatura del sistema sia di poco superiore e anche inferiore alla temperatura critica di alcuni componenti. Alcuni di questi componenti (dal propano all’esano) allo stato puro, alla \(T \) e \(P \) del sistema, sono liquidi. Questi componenti sono però presenti in percentuale limitata; è per questa ragione che la legge di Amagat fornisce risultati soddisfacenti per il calcolo del coefficiente di comprimibilità medio. La stessa legge non può essere invece applicata allo stesso sistema per il calcolo ad esempio del coefficiente di fugacità degli idrocarburi (propano e superiori) che risultano liquidi allo stato puro, alla \(T \) e \(P \) del sistema.

Sulla base di questi e di altri dati sperimentali, sono state proposte alcune regole per la valutazione delle proprietà \(P \), \(V \), \(T \), dei sistemi gassosi reali.

Smith e Van Ness [90] suggeriscono di calcolare il coefficiente medio di comprimibilità di miscele di gas, applicando rispettivamente la legge di Amagat se \(P > 300 \) atm, la legge di Dalton se \(P < 50 \) atm ed il metodo delle condizioni
pseudocritiche (in particolare per miscelé di idrocarburi) per P compreso tra 50 e 300 atm. Si deve però precisare che questi criteri possono cadere in difetto se i componenti della miscela sono tra loro chimicamente molto diversi, in particolare se differiscono alquanto nel carattere polare.

Obert e Young [72], sulla base di esperienze da loro condotte su nove miscela gassose, giungono alle seguenti conclusioni, sempre relative all'applicabilità della legge di Amagat, della legge di Dalton e del metodo delle condizioni pseudocritiche, alla valutazione delle proprietà P, V, T dei sistemi gassosi reali.

— Più è elevata la temperatura pseudo-ridotta del sistema ($T'_{r,m}$), sopra l'unità, più i tre metodi forniscono risultati accurati.

— Le miscela equimolari danno luogo agli scostamenti maggiori.

— Per valori della pressione pseudo-ridotta ($P'_{r,m}$) compresi tra 1 e 9, la legge di Amagat può dar luogo ad errori rilevanti; per valori superiori della pressione, gli errori massimi che si commettono nel calcolo del volume sono dell’ordine di 10%.

— Per valori di $P'_{r,m} > 1$, la legge di Dalton non può essere applicata.

— Per $T'_{r,m} > 2,0$ e $P'_{r,m} < 0,1$, ognuno dei tre metodi può essere utilizzato.

— Per $2,0 > T'_{r,m} > 1,0$ e $9,0 > P'_{r,m} > 1,0$, il metodo delle condizioni pseudocritiche fornisce i risultati più soddisfacenti.

— Per $2,0 > T'_{r,m} > 1,0$ e $P'_{r,m} > 9,0$, può essere applicata sia la legge di Amagat, sia il metodo delle condizioni pseudocritiche.

— Per $T'_{r,m} < 1,0$, nessun metodo fornisce risultati molto soddisfacenti; quello meno impreciso è il metodo delle condizioni pseudocritiche.

L'indagine di sistemi di questo tipo presenta interesse per lo studio ad esempio dei processi di sintesi dell'ammoniaca e del metanolo.

In questi impianti importa conoscere la percentuale di ammoniaca e, rispettivamente, di metanolo, nei gas di riciclo, dopo il condensatore. In questi e in altri casi, si tratta di calcolare la composizione di una fase gassosa, ad alta pressione e a temperatura relativamente bassa, costituita da gas incondensati e dai vapori del componente condensato.

In ultima analisi, per effettuare tale calcolo, è sufficiente conoscere la legge seguita dal sistema. Greco, Casale e Negri [32] hanno mostrato che, per alcuni sistemi del tipo di quelli sopra citati, si ottengono risultati in buon accordo con i
dati sperimentali, supponendo che la fase vapore in equilibrio con la fase liquida segua la legge di DALTON.

I risultati di questi calcoli, per il sistema NH$_3$—(N$_2$ + 3 H$_2$), sono riportati nella figura (11, IV).

Si osserva che tra le diverse ipotesi considerate, quella che suppone che la fase vapore segua la legge di additività dei volumi (miscela ideale di gas reali) dà luogo ai risultati maggiormente errati.

Gli errori medi di composizioni calcolate con diverse ipotesi, rispetto ai valori sperimentali, sono riportati nella tabella (3, IV) per alcuni sistemi.

\[P_{\text{NH}_3}^{l} = P_{\text{NH}_3}^{g}, \]

ove gli indici \(l \) e \(g \) si riferiscono rispettivamente alla fase liquida e alla fase gassosa.
Tabella (3, IV) - Errore medio % sul valore della frazione molara nella fase gassosa del componente condensato, rispetto ai valori sperimentali (da Greco, Casale, e Negri [32]).

<table>
<thead>
<tr>
<th></th>
<th>Campo di pressioni considerate kg/cm² ass</th>
<th>Legge di Raoult</th>
<th>Legge di Lewis - Randall (Amagat)</th>
<th>Legge di Dalton</th>
<th>Equazione di Joffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃—(N₂ + 3 H₂)</td>
<td>50-300</td>
<td>— 36%</td>
<td>+ 168%</td>
<td>— 5,3%</td>
<td>+ 18,5%</td>
</tr>
<tr>
<td>T = 15 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂—H₂</td>
<td>60-130</td>
<td>— 32,5%</td>
<td>+ 32,5%</td>
<td>+ 1,97%</td>
<td>+ 10,9%</td>
</tr>
<tr>
<td>T = 0 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂—H₂</td>
<td>80-250</td>
<td>— 52%</td>
<td>+ 214%</td>
<td>— 18,8%</td>
<td>— 4,8%</td>
</tr>
<tr>
<td>T = —51,5 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O—CH₄</td>
<td>50-340</td>
<td>— 22%</td>
<td>+ 75%</td>
<td>— 6,8%</td>
<td>+ 54,5%</td>
</tr>
<tr>
<td>T = 204,4 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il calcolo di \(P'_{NH₃} \), può essere effettuato con buona approssimazione con l’equazione (59, I), trascurando l’influenza dei gas disciolti, supponendo che l’ammoniaca in fase liquida sia allo stato puro, alla pressione totale \(P \) del sistema.

Se il sistema segue la legge di DALTON, la fugacità dell’ammoniaca in fase vapore è uguale alla fugacità \((P'_{NH₃})_{P'_{NH₃}} \) che l’ammoniaca avrebbe se occupasse da sola (esercitando la pressione \(P'_{NH₃} \)) il volume della fase gassosa del sistema, (vedi eq. 40, IV) ossia:

\[
(46, IV) \quad P'_{NH₃} = (P'_{NH₃})_{P'_{NH₃}} = (φ'_{NH₃})_{P_{NH₃}} \cdot P'_{NH₃}
\]

Il coefficiente di fugacità \((φ'_{NH₃})_{P_{NH₃}} \) è funzione solo di \(P'_{NH₃} \) e di \(T \) e può essere calcolato con i dati della fig. (4, IV).

\(P'_{NH₃} \) si può calcolare per tentativi, con l’ausilio della (46, IV), nella quale \((P'_{NH₃})_{P_{NH₃}} \) è noto.

Poiché:

\[
(47, IV) \quad P'_{(N₂ + 3H₂)} = P - P'_{NH₃}
\]

ove \(P'_{(N₂ + 3H₂)} \) = pressione che sarebbe esercitata da \(N₂ + 3H₂ \) se nel sistema non fosse presente NH₃,

risulta:

\[
(48, IV) \quad \frac{P'_{NH₃}}{P'_{(N₂ + 3H₂)}} = \frac{z'_{NH₃} \cdot n_{NH₃}}{z'_{(N₂ + 3H₂)} \cdot n_{(N₂ + 3H₂)}}
\]
ove:

\[z'_{\text{NH}_3} \text{ e } z'_{(N_2 + 3 \text{H}_2)} \] sono i coefficienti di comprimibilità di \text{NH}_3 e \text{N}_2 + 3 \text{H}_2 allo stato puro, alla \(T \) del sistema, rispettivamente alla pressione \(P'_{\text{NH}_3} \) e \(P'_{(N_2 + 3 \text{H}_2)} \).

\[n_{\text{NH}_3}, \ n_{(N_2 + 3 \text{H}_2)} \] = numero di moli di \text{NH}_3 e rispettivamente di \((\text{N}_2 + 3 \text{H}_2)\) nella fase vapore.

Da questi esempi, potremmo ritenere che, se la temperatura del sistema gassoso considerato (sottoposto ad alta pressione) è sensibilmente inferiore alla temperatura critica di uno o più componenti del sistema, il coefficiente di fugacità di questi ultimi componenti si calcolerà meglio applicando la legge di DALTON.

Se invece la temperatura del sistema è superiore a quella critica di ciascun componente del sistema, si è osservato che, per lo meno in taluni casi, il calcolo dei coefficienti di fugacità di ciascun componente, può essere effettuato applicando la legge di AMAGAT.

Nei casi dubbi, può essere applicata l’equazione di JOFFE (44, IV).

Alcuni esempi relativi a questi ultimi casi sono riportati nel prossimo parafraso, dedicato allo studio degli equilibri chimici in sistemi gassosi reali.

Per quanto riguarda la valutazione delle altre grandezze (calori molarí, entalpie, ecc.) relative a sistemi gassosi a più componenti, sotto pressione, i dati sperimentali a disposizione non sono sufficienti per trarre conclusioni aventi ampia validità. In generale, se non si dispone di altre indicazioni, converrà applicare i criteri riportati per la valutazione dei coefficienti di fugacità, anziché quelli relativi al calcolo dei coefficienti di comprimibilità.

14. Equilibri chimici in sistemi gassosi reali. — Si consideri la reazione:

\[a \ A + b \ B \rightleftharpoons r \ R + a \ S; \]

ove A, B, R e S sono dei gas reali; all’equilibrio si avrà (v. eq. (90, I)):

\[K = \frac{(P_R)^r(P_S)^s}{(P_A)^a(P_B)^b} = \frac{(\varphi_R)^r(\varphi_S)^s}{(\varphi_A)^a(\varphi_B)^b} \cdot \frac{(P_R)^r(P_C)^s}{(P_A)^a(P_B)^b} \]

ove:

\(P_i, \varphi_i \) e \(P_i^{\prime} \) = rispettivamente fugacità, coefficiente di fugacità e pressione parziale di \(i \) nel sistema.

Ponendo:

\[K_e = \frac{(\varphi_R)^r(\varphi_S)^s}{(\varphi_A)^a(\varphi_B)^b} \]

e:

\[K_P = \frac{(P_R)^r(P_S)^s}{(P_A)^a(P_B)^b} \]
si ha:

\[(53, \text{IV})\]

\[K = K_{\varphi} K_P,\]

ove solo \(K\) è funzione della sola temperatura \((ln K = -\Delta G^\circ/R T)\).

Abbiamo osservato che per le miscele ideali di gas non ideali i coefficienti \(\varphi_i\) sono indipendenti dalla composizione del sistema. In tali casi risulta:

\[(54, \text{IV})\]

\[K_{\varphi} = K_{\varphi} (T, P) \quad \text{e} \quad K_P = K_P (T, P).\]

Per le miscele non ideali si avrà invece:

\[(55, \text{IV})\]

\[K_{\varphi} = K_{\varphi} (T, P, x_i) \quad \text{e} \quad K_P = K_P (T, P, x_i);\]

ossia, in questi casi, \(K_P\) è funzione non solo di \(T\) e di \(P\), ma anche della composizione all'equilibrio del sistema considerato.

Per i sistemi ideali (costituiti da gas ideali) \(K_{\varphi} = 1\).

In pratica, tale condizione è verificata per reazioni condotte a pressioni sufficientemente basse e a temperature sufficientemente alte (ad es.: ossidazione di \(\text{SO}_2\) a \(\text{SO}_3\), conversione ossidante del metano a \(\text{CO}\) e \(\text{H}_2\), ecc.).

![Graph](image)

Fig. (12, IV) - Costanti di equilibrio per le sintesi dell'ammoniac, calcolate con diverse ipotesi: 1) gas ideale \((K_{\varphi})\); 2) legge di Amagat; 3) metodo di Joffe. (da Comings [12]).

In molti altri casi, ed in particolare nelle reazioni condotte ad alta pressione nelle quali la volatilità dei prodotti è sensibilmente inferiore a quella dei reagenti (es. sintesi dell'ammoniac, sintesi del metanolo), \(K_{\varphi}\) può risultare alquanto inferiore a 1.

Nelle figure (12, IV) e (13, IV) vengono paragonati dati sperimentali di equi-
librio e valori calcolati applicando diverse ipotesi, rispettivamente per le sintesi dell’ammoniaca e del metanolo. Poiché il prodotto $K_p \cdot K_P$ è funzione della sola temperatura, nel diagramma della fig. (12, IV), il valore corretto di detta grandezza dovrebbe essere rappresentato da una retta parallela all’asse delle pressioni. Si osserva che l’applicazione della legge dei gas perfetti darebbe luogo ad errori rilevanti; nel caso della sintesi dell’ammoniaca, il metodo di Joffe (eq. 44, IV), fornisce i risultati più soddisfacenti per un ampio intervallo di pressione.

Anche la legge di Amagat fornisce risultati soddisfacenti, per entrambe le sintesi considerate, per pressioni inferiori a 600 atm. Si tenga presente che le temperature critiche di NH$_3$ e CH$_3$OH sono eguali rispettivamente a 406 °K e 513 °K.

I valori di K_p, per le reazioni di sintesi del metanolo e dell’ammoniaca, calcolati applicando la legge di Amagat, sono riportati nelle figure (14, IV) e (15, IV) per diversi valori di T e P.

Si può osservare che nelle condizioni di sintesi del metanolo (\sim 300 atm e 400 °C): $K_p \simeq 0,4$; per la sintesi dell’ammoniaca a 300 atm e 500 °C: $K_p \simeq 0,7$.

Osserveremo infine che in taluni casi $K_p \simeq 1$, anche se i coefficienti di fugacità dei singoli reagenti sono diversi dall’unità. Evidentemente, ciò accade quando il
prodotto dei coefficienti di fugacità dei prodotti della reazione è praticamente uguale al prodotto dei coefficienti di fugacità dei reagenti.

Fig. (14, IV) - Valori di \(K_p = \varphi_{\text{NH}_3}/(\varphi_{\text{N}_2})^{1/2} (\varphi_{\text{H}_2})^{3/2} \) per la reazione \(\frac{1}{2} \text{N}_2 + \frac{3}{2} \text{H}_2 \rightleftharpoons \text{NH}_3 \), calcolati supposta verificata la legge di AMAGAT (da Newton e Dodge [71].)

Ad esempio, nel caso della reazione di sintesi dell’alcool etilico da \(\text{H}_2\text{O} \) e \(\text{C}_2\text{H}_4 \) in fase vapore, che si conduce a circa 70 atm e 300 °C, \(K_p \) si può ritenere poco di-

Fig. (15, IV) - Valori di \(K_p = \varphi_{\text{C}_2\text{H}_5\text{OH}}/(\varphi_{\text{CO}})(\varphi_{\text{H}_2})^2 \) per la reazione \(\text{CO} + 2 \text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} \), calcolati supposta verificata la legge di AMAGAT.

verso dall’unità; in effetti, per i diversi componenti del sistema, ciascuno considerato allo stato puro a 70 atm e 300 °C, si trova:

\[\varphi_{\text{H}_2\text{O}} \approx 0,8; \quad \varphi_{\text{C}_2\text{H}_5\text{OH}} \approx 0,75; \quad \varphi_{\text{C}_2\text{H}_4} \approx 0,98; \]

ossia, se fosse valida la legge di AMAGAT: \(K_p \approx 0,92 \); applicando il metodo di JOFFE o la legge di DALTON, si troverebbero per \(K_p \) valori ancora più vicini all’unità.
Quest’esempio, insieme ad altri, oltre a quelli riportati in questo paragrafo, è ulteriormente illustrato da Gonikberg [31].

15. Calori di reazione in sistemi gassosi reali. — Si consideri un sistema gassoso reale sede di una reazione chimica, chiuso agli scambi di materia e di lavoro — diverso da quello meccanico — e mantenuto a T e P costanti.

Il calore scambiato con l’ambiente per effetto della reazione è fornito dalla relazione:

\[(56, \text{IV})\]
\[Q = H_2 - H_1 = \Delta H_{2,1}\]

ove H_2 e H_1 = rispettivamente entalpia del sistema alla fine e all’inizio della trasformazione.

Per una trasformazione infinitesima, la (56, IV) si può scrivere:

\[(57, \text{IV})\]
\[(d\ H)_{T,P} = (\delta\ Q)_{T,P} = \left(\frac{\partial\ H}{\partial\ \xi}\right)_{T,P} d\ \xi\]

ove ξ = grado di avanzamento della reazione.

L’espressione

\[(58, \text{IV})\]
\[Q_P = \left(\frac{\partial\ H}{\partial\ \xi}\right)_{T,P} = \left(\frac{\delta\ Q}{d\ \xi}\right)_{T,P} = \Delta H,\]

rappresenta la tonalità termica (con il segno cambiato) della reazione, a temperatura e pressione costanti.

Posto, per un grado di avanzamento unitario, $\Delta H_{1,2} = \Delta H$, da quanto sopra, si osserva anzitutto che in generale:

\[(59, \text{IV})\]
\[\Delta H \neq \Delta H.\]

Si nota inoltre che entrambe queste grandezze dipendono – a priori – non solo dalla temperatura e dalla pressione, ma anche dalla composizione del sistema.

In base all’equazione (56, IV), risulta che il metodo di calcolo più diretto per valutare un calore di reazione, consisterebbe nel calcolare l’entalpia del sistema considerato, prima e dopo la reazione, con i metodi riportati nel paragrafo relativo al calcolo dell’entalpia dei sistemi gassosi reali.

Se il sistema gassoso in esame segue la legge di Amagat per l’intero intervallo di pressione 0, P (miscela ideale), le entalpie parziali molari di ciascun componente del sistema sono funzione solamente di T e P e non dipendono dalla composizione del sistema.
In tal caso:

\[\Delta H = \sum_i v_i h_i = \sum_i v_i \Delta H_i = \Delta H.\]

ove \(h_i \) e \(\Delta H_i \) = rispettivamente entalpia ed entalpia di formazione di \(i \) alla \(T \) e \(P \) del sistema.

Solitamente si conoscono solo i valori di \(h_i^0 \) o di \(\Delta H_i^0 \), ma se il sistema segue la legge di additività dei volumi per l’intero campo di pressione 0, \(P \), \(\Delta H \) può essere calcolato noto \(\Delta H^0 \) ed il valore delle differenze \(h_i^0 - h_j \) per ciascun componente del sistema, calcolate alla \(P \) totale del sistema; tali differenze si valutano con l’aiuto dei dati della fig. (5, IV), nella quale i valori di \((h_i^0 - h_j)/T_{c,i}\) sono riportati in funzione della temperatura ridotta e della pressione ridotta del componente considerato.

Posto:

\[\delta_{H,i} = \frac{(h_i^0 - h_j)}{T_{c,i}} \]

e tenuto presente che per il caso considerato:

\[\Delta H = \sum_i v_i h_i \]
\[\Delta H^0 = \sum_i v_i h_i^0 \]
si ottiene:

\[\Delta H = \Delta H^0 - \sum_i v_i \delta_{H,i} T_{c,i} \]

Questo equazione consente di valutare l’influenza della pressione sulle tonalità termiche delle reazioni che avvengono in sistemi gassosi che seguono la legge di Amagat.

Nel paragrafo precedente, si è osservato che questa legge è seguita con buona approssimazione nel caso della sintesi del metanolo e dell’ammoniaca.

Per queste due reazioni, risulta, dalla letteratura, per \(T = 400 \, ^{\circ}C \).

\[\Delta H_{NH_3}^0 = -12600 \, \text{cal/mole}; \quad \Delta H_{\text{Sint. CH}_3\text{OH}}^0 = -24700 \, \text{cal/mole} \, [81] \, [89] \]

Tenendo conto dell’influenza della pressione, si calcola, applicando la legge di Amagat:

per \(P = 300 \, \text{atm} \) e \(T = 400 \, ^{\circ}C \):

\[(\Delta H_{NH_3})_{300 \, \text{atm}} = -13400 \, \text{cal/mole}; \quad (\Delta H_{\text{Sint. CH}_3\text{OH}})_{300 \, \text{atm}} = -26100 \, \text{cal/mole}. \]

Da questi dati, si osserva che, per pressioni elevate, l’influenza della pressione sul \(\Delta H \) di reazione, non può essere a priori sempre trascurata.
Per i sistemi che non seguono la legge di Amagat, la (60, IV) (2) e la (63, IV) non sono più verificate.

In questi casi, per valutare il calore di reazione a T e P costanti, si dovrebbe far ricorso alla (56, IV). Il problema si riconduce al calcolo delle entalpie di sistemi gassosi reali. Nel capitolo precedente si è visto che tale calcolo può essere effettuato solo in modo approssimato. Osserveremo tuttavia che, nel caso di reazioni tra gas, la variazione del calore di reazione con la composizione del sistema, si può generalmente trascurare.

Per reazioni che avvengono in soluzione, in particolare nel caso degli elettroliti, il calore di reazione, come verrà meglio mostrato nel capitolo successivo, può invece variare sensibilmente al variare della composizione del sistema.

Per valutare l'influenza della pressione sul ΔH può essere utile riportare una relazione tra ΔH e ΔH^0 avente validità generale.

A tale scopo, si consideri la relazione:

\[
(64, \text{ IV}) \quad \left(\frac{\partial (\Delta G / T)}{\partial T} \right)_{P, \xi} = - \frac{\Delta H}{T^2},
\]

Si tenga presente inoltre che:

\[
(65, \text{ IV}) \quad \Delta G = \Delta G^0 + R \, T \, \sum v_i \ln P_i^*.
\]

Ed infine che:

\[
(66, \text{ IV}) \quad \left(\frac{\partial (\Delta G^0 / T)}{\partial T} \right)_{P, \xi} = - \frac{\Delta H^0}{T^2}.
\]

Combinando le (64-66, IV) si ottiene:

\[
(67, \text{ IV}) \quad \Delta H = \Delta H^0 - R \, T^2 \left(\frac{\partial \sum \ln (P_i^*)^{x_i}}{\partial T} \right)_{P, \xi}.
\]

Tenendo presente che $P_i^* = \varphi_i x_i P$, si trova:

\[
(68, \text{ IV}) \quad \Delta H = \Delta H^0 - R \, T^2 \left(\frac{\partial \sum \ln (\varphi_i)^{x_i}}{\partial T} \right)_{P, \xi}.
\]

Se il sistema è costituito da gas ideali: $\varphi_i = 1$ e $\Delta H = \Delta H^0$. In questo caso, l'entalpia di reazione è indipendente dalla pressione e dal grado di avanzamento. Se soltanto la miscela è ideale ed i gas sono non ideali, il valore del coefficiente

\[(\text{IV})\] In questo caso la (60, IV) è rigorosamente verificata solo per sistemi contenenti un numero infinito di moli.
di fugacità di ciascun componente reale del sistema è diverso dall’unità, ma indipendente dalla composizione del sistema e si può porre:

\[(69, IV) \quad \sum_{i} \ln (\varphi_i)^{v_i} = \ln K_v (P, T)\]

per cui la (69, IV) diventa:

\[(70, IV) \quad \Delta H = \Delta H^0 - R T^2 \left(\frac{\partial \ln K_v}{\partial T} \right)_{P, \xi}.\]

Per miscele ideali, i \(\Delta H\) calcolati con questa equazione coincidono evidentemente con quelli calcolati con la (63, IV).

Per miscele non ideali, si nota ancora una volta dalla (68, IV) che il \(\Delta H\) dipende anche dal grado di avanzamento della reazione. Tuttavia, data la piccola influenza di tale variabile sulla tonalità termica, per reazioni che avvengono in miscele gassose non ideali, i \(\Delta H\) si possono calcolare introducendo nella (68, IV) valori medi dei coefficienti di fugacità dei singoli componenti.

Un’altra grandezza che viene sovente utilizzata, oltre alla tonalità termica a \(T\) e \(P\) costanti, è la tonalità termica a \(T\) e \(V\) costanti.

Come è noto, \(Q_V\) è così definito:

\[(71, IV) \quad Q_V = \left(\frac{\partial U}{\partial \xi} \right)_{T,V} = \left(\frac{\delta Q}{\delta V} \right)_{T,V} = \Delta U,\]

ove: \(U\) = energia interna del sistema.

Si dimostra in Chimica-Fisica che \(Q_P\) e \(Q_V\) sono legate dalla seguente relazione:

\[(72, IV) \quad Q_P = Q_V + \left[\left(\frac{\partial U}{\partial V} \right)_{T,\xi} + P \right] \left(\frac{\partial V}{\partial \xi} \right)_{T,P}.\]

La derivata parziale \((\partial U/\partial V)_{T,\xi}\) rappresenta la pressione interna del sistema.

L’equazione (72, IV) può essere modificata tenute presenti le seguenti relazioni, per la dimostrazione delle quali si rimanda ai testi di Chimica-Fisica.

\[(73, IV) \quad \left(\frac{\partial U}{\partial V} \right)_{T,\xi} = T \left(\frac{\partial S}{\partial V} \right)_{T,\xi} - P;\]

e:

\[(74, IV) \quad \left(\frac{\partial S}{\partial V} \right)_{T,\xi} = \left(\frac{\partial P}{\partial T} \right)_{V,\xi}.\]
L'equazione (72, IV) diventa quindi:

\[
Q_P = Q_V + T \left(\frac{\partial P}{\partial T} \right)_{V,\xi} \left(\frac{\partial V}{\partial \xi} \right)_{T,P}.
\]

Le derivate parziali che compaiono nel secondo termine di quest'equazione si possono calcolare a partire dalla \(PV = z_m n RT \) (ove \(z_m \) è il coefficiente di comprimibilità della miscela); tenuto presente che \((\partial n/\partial \xi)_{T,P} = \sum_i \nu_i \) e trascurando \((\partial z_m/\partial \xi)_{T,P} \), si ottiene, con alcuni passaggi:

\[
Q_P = Q_V + RT \sum_i \nu_i \left[z_m + T \left(\frac{\partial z_m}{\partial T} \right)_{V,\xi} \right].
\]

Per reazioni tra gas ideali si ottiene la nota relazione:

\[
Q_P = Q_V + RT \sum \nu_i.
\]
CAPITOLO V

EQUILIBRI CHIMICI E CALORI DI REAZIONE
IN SISTEMI CONDENSATI

1. Premessa. — Il calcolo delle grandezze fisiche o termodinamiche delle soluzioni liquide non ideali, non può essere in generale effettuato, neppure in modo approssimato, a partire dalla sola conoscenza delle proprietà dei componenti del sistema allo stato puro. Per la valutazione di tali grandezze, non si dispone quindi di metodi generali, simili a quelli discussi nel caso delle miscele gassose, ma si devono utilizzare, volta per volta, i dati sperimentali relativi alla soluzione stessa.

Nel caso invece di soluzioni ideali, diverse grandezze parziali molari dei singoli componenti del sistema sono indipendenti dalla composizione ed il calcolo delle proprietà termodinamiche della miscela può essere effettuato, note le corrispondenti grandezze relative ai componenti allo stato puro, con l’ausilio ad esempio delle relazioni (25-28, IV) riportate per i sistemi gassosi che seguono la legge di Amagat.

Si deve però osservare che nel caso dei sistemi liquidi, le miscele ideali, o praticamente tali, si riscontrano con minor frequenza che nel caso dei sistemi gassosi. In effetti, è ben noto che due o più sostanze possono formare una soluzione ideale, solamente se presentano strettissime analogie sia di natura fisica che di natura chimica; al limite, due sostanze A e B possono formare una soluzione teoricamente ideale se le rispettive molecole sono chimicamente simili ed hanno la stessa forma e le stesse dimensioni, in modo che le forze di interazione tra due molecole di A, due molecole di B e una molecola di A ed una di B, assumano tutte lo stesso valore per una data distanza tra i centri delle molecole. Nel caso di sistemi condensati, data la notevole vicinanza delle molecole, eventuali differenze — anche limitate — tra queste interazioni, hanno un’influenza molto più marcata di quanto non lo sia nel caso dei sistemi gassosi.
Da queste osservazioni, si può concludere che liquidi organici, anche se di composti appartenenti alla stessa serie, daranno luogo a soluzioni praticamente ideali solamente se i loro pesi molecolari saranno sufficientemente vicini.

Le miscele contenenti almeno un composto polare, accanto ad altri apolari, o di polarità diverse, daranno invece sempre luogo a soluzioni il cui comportamento si scosterà anche notevolmente dall'idealità.

Nel caso delle soluzioni di elettroliti, a causa del particolare tipo di riferimento scelto per definire le attività (vedi fig. 3, I), le proprietà termodinamiche del soluto (ad eccezione di quelle dipendenti dalla diluizione), nelle soluzioni sufficientemente diluite, saranno uguali a quelle corrispondenti nello stato ipotetico di riferimento. Inoltre, per queste soluzioni diluite, il coefficiente di attività del soluto risulta unitario.

Nei processi dell'industria chimica tuttavia, tali soluzioni non si riscontrano frequentemente.

In questo capitolo viene illustrato, con alcuni esempi, il comportamento delle soluzioni non ideali, e vengono riportati in particolare alcuni metodi grafici per il calcolo della resa in reazioni che hanno luogo in sistemi condensati, basati sull'impiego di diagrammi di stato.

Lo studio dei sistemi liquidi verrà ulteriormente approfondito in un prossimo volume che tratterà degli equilibri fisici.

2. Calori integrali di soluzione e cenni su altre proprietà di soluzioni. — Nelle tabelle (18-21, II) sono stati riportati i valori dei ΔH di formazione di alcuni elettroliti sia allo stato puro sia in soluzione acquisa. Da questi dati, è possibile calcolare direttamente le entalpie integrali di soluzione con la relazione:

$$(1, V) \quad \Delta H_{A,\text{sol}}^{aq(n)} = \Delta H_A^{aq(n)} - \Delta H_A^0$$

ove:

$\Delta H_{A,\text{sol}}^{aq(n)}$ = entalpia di soluzione di una mole di soluto in n moli di H_2O, alla T e P del sistema;

$\Delta H_A^{aq(n)} = \Delta H_A^{aq(n)}$ = entalpia di formazione di una mole di soluto A in n moli di H_2O alla T e P del sistema;

ΔH_A^0 = entalpia di formazione di una mole di A allo stato puro alla T e P del sistema.

I valori dell'entalpia integrale di soluzione di alcuni acidi, basi e sali sono riportati nelle figg. (1-2, V). Per le soluzioni diluite di acidi e di basi forti, questi valori risultano molto negativi; per soluzioni ideali invece: $\Delta H_{\text{sol}}^{aq(n)} = 0$.
Per i sali, l'entalpia di dissoluzione può essere positiva e anche relativamente piccola come nel caso di NaCl; per questa ragione, la solubilità di NaCl in acqua varia poco con la temperatura.

I calori specifici di alcune soluzioni di elettroliti sono riportati nella fig. (3, V). A titolo esemplificativo, vengono ancora riportati nella fig. (4, IV) i calori parziali molari di H₂O e H₂SO₄ nel sistema H₂O—H₂SO₄. Da questi esempi, si può notare, com'era facilmente prevedibile, che lo sco-
stamento dall'idealità dei sistemi acqua-elettrolito è rilevante. Ciò significa, in particolare, che i coefficienti di attività e le grandezze parziali molari delle varie specie che costituiscono tali sistemi varieranno, in generale, in modo sensibile al variare della composizione del sistema.

Fig. (3, V) - Calori specifici di soluzioni acquose di acidi. (vedi Timmermans [99] e letteratura ivi citata).

Per la valutazione delle grandezze parziali molari, note le proprietà globali di un dato sistema, in funzione della sua composizione, si rimanda ai testi di Chimica-Fisica.

Fig. (4, V) - Calori parziali molari di H₂O e H₂SO₄ nel sistema H₂O—H₂SO₄ a 25 °C (da Lewis e Randall [57] e Giauque, Hornung, Kunzler e Rubin [29]).

Altre caratteristiche delle soluzioni ideali e non ideali verranno discusse nella parte del corso dedicata ai processi di separazione.
3. Calori di reazione in sistemi liquidi. — Con una trattazione simile a quella riportata nel capitolo precedente per i sistemi gassosi, si dimostra che l'enthalpia di reazione in un sistema liquido non ideale è fornita dalla relazione:

(2, V) \[\Delta H = \Delta H^\circ - R T \sum_i v_i \left(\frac{\partial \ln \gamma_i}{\partial T} \right)_{P,\xi} \]

ove:
- \(\Delta H = (\partial H/\partial \xi)_{T,P} \) = entalpia di reazione, nelle condizioni effettive del sistema;
- \(\Delta H^\circ = (\partial H^\circ/\partial \xi)_{T,P} \) = entalpia standard di reazione, alla \(T \) e \(P \) del sistema;
- \(\gamma_i \) = coefficiente di attività della specie \(i \) nel sistema.

Nel paragrafo precedente si è visto che per i sistemi liquidi non ideali, il valore numerico dei coefficienti di attività può variare in modo sensibile con la composizione; anche le derivate \((\partial \ln \gamma_i/\partial T)_{P,\xi} \) sono funzione, a priori, di tale variabile; ne consegue che le tonalità termiche di reazioni che avvengono in sistemi liquidi non ideali, possono dipendere in modo non trascurabile dalla composizione del sistema.

Fig. (5, V) - \(\Delta H \) della reazione \(\text{NH}_3(\text{aq}) + \text{HNO}_3(\text{aq}) \rightarrow \text{NH}_4\text{NO}_3(\text{aq}) \)
in funzione della concentrazione di \(\text{HNO}_3 \) (diagramma calcolato dai dati riportati da Rossini e coll. [80]).

Queste osservazioni potevano anche essere fatte tenendo conto della dipendenza delle entalpie parziali molari dei reagenti e dei prodotti, dalla composizione del sistema. In effetti:

(3, V) \[\Delta H = \left(\frac{\partial H}{\partial \xi} \right)_{T,P} = \sum_i v_i \overline{h}_i \]

ove: \(\overline{h}_i \) = entalpia parziale molare di \(i \) nel sistema.
Da queste considerazioni, si comprende come la dipendenza della tonalità termica della reazione, dalla composizione della soluzione, sarà particolarmente marcata nel caso di reazioni alle quali partecipano elettroliti o comunque sostanze molto polari. A titolo esemplificativo, nella fig. (5, V), è riportata la tonalità termica della reazione $\text{NH}_4\text{(aq)} + \text{HNO}_3\text{(aq)} \rightarrow \text{NH}_3\text{NO}_3\text{(aq)}$ in funzione della concentrazione dell'acido nitrico. Si osserva che il calore sviluppato dalla reazione aumenta in modo sensibile all'aumentare della concentrazione dell'acido.

4. Equilibri chimici in sistemi condensati - Esempi. — Si consideri la reazione:

$$b\text{ B} + c\text{ C} \rightleftharpoons r\text{ R} + s\text{ S},$$

che avviene in un sistema condensato.

All'equilibrio si avrà:

$$K = \frac{(a_R)^r(a_S)^s}{(a_B)^b(a_C)^c}.$$ \hspace{1cm} (5, V)

Il valore numerico delle attività che compaiono in questa equazione, dipende dallo stato di riferimento scelto per il ΔG^0 di formazione dei singoli componenti. Ad esempio, se si tratta di una reazione tra elettroliti in soluzione acquosa, la K di equilibrio si può calcolare a partire dai ΔG^0 di formazione dei componenti in soluzione acquosa nello stato ipotetico a molalità unitaria (vedi fig. (3, I)). In questo caso risulta (vedi eq. (65, I)):

$$K = \frac{(m\gamma_R)^r(m\gamma_S)^s(m\gamma_C)^t}{(m\gamma_B)^b(m\gamma_C)^c(m\gamma_C)^c}.$$ \hspace{1cm} (6, V)

Per reazioni tra sostanze organiche allo stato condensato, può essere più conveniente calcolare la K di equilibrio a partire dai ΔG^0 di formazione allo stato puro. Si ha allora:

$$K = \frac{(z\gamma_R)^r(z\gamma_S)^s(z\gamma_S)^t}{(z\gamma_B)^b(z\gamma_C)^c(z\gamma_C)^c}.$$ \hspace{1cm} (7, V)

Tenuta presente la definizione dello stato di riferimento riportata nella fig. (3, V), si osserva che i coefficienti $m\gamma_i$, che compaiono nella (6, V) sono unitari solo per soluzioni molto diluite; in pratica, questa condizione è verificata per concentrazioni dell'ordine di grandezza di $1 \times 10^{-3} \div 10^{-5}$ moli/l. Per soluzioni di elettroliti un po' più concentrate, si dispone, in taluni casi, di equazioni per il calcolo dei coefficienti di attività (si vedano ad esempio [21] e [65]).

Questi diversi casi non interessano però i processi che si riscontrano nell'industria chimica, nei quali si opera generalmente con soluzioni concentrate.

Per quanto riguarda l'applicabilità della (7, V), ricorderemo che i coefficienti
di attività che compaiono in essa sono unitari solo nel caso di soluzioni ideali, ossia, in generale, solo se i componenti che prendono parte alla reazione sono chimicamente e fisicamente tra loro molto simili; anche questi casi sono tuttavia poco frequenti.

Poiché non si dispone di metodi di calcolo dei coefficienti di attività aventi validità sufficientemente generale, lo studio degli equilibri chimici in sistemi condensati non ideali potrà essere effettuato solo con l’ausilio di dati sperimentali appropriati.

Un’ulteriore interessante osservazione che può essere fatta sulla base di quanto ricordato in questo paragrafo, riguarda l’influenza della natura del solvente sulla resa all’equilibrio di reazioni condotte in soluzione. In effetti, il ΔG° di formazione di una sostanza in soluzione, dipende dalla natura del solvente; inoltre la natura del solvente può anche influenzare sensibilmente il valore numerico dei coefficienti di attività. Si comprende pertanto come la resa all’equilibrio di talune reazioni che avvengono in soluzione, possa essere aumentata scegliendo opportunamente il solvente.

Alcuni esempi serviranno meglio a chiarire gli aspetti particolari degli equilibri chimici in soluzione.

Esempio 1: *Equilibrio di dissoluzione e dissociazione in acqua di CaSO$_4$ in presenza di (NH$_4$)$_2$SO$_4$.*

La costante di dissociazione del solfato di calcio, in presenza di corpo di fondo ($a_{\text{CaSO}_4} = 1$), si esprime nella forma:

\[
K = \frac{(a_{\text{Ca}^{++}})(a_{\text{SO}_4^{-}})}{a_{\text{CaSO}_4}} = (a_{\text{Ca}^{++}})(a_{\text{SO}_4^{-}}) = (\gamma_{\text{Ca}^{++}})(m_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})(m_{\text{SO}_4^{-}}) = \frac{(m_{\text{Ca}^{++}})(m_{\text{SO}_4^{-}})}{(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})} \frac{K}{(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})}.
\]

Il valore numerico di questa costante è indipendente dalla presenza o meno di (NH$_4$)$_2$SO$_4$ nel sistema.

Il prodotto:

\[
(9, V) \quad (m_{\text{Ca}^{++}})(m_{\text{SO}_4^{-}}) = \frac{K}{(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})},
\]

varia invece sensibilmente al variare della concentrazione del solfato ammonico, come risulta dalla tab. (1, V), ove sono riportati per alcune composizioni della soluzione, i valori del rapporto:

\[
(10, V) \quad \frac{K_2}{K_1} = \frac{[(m_{\text{Ca}^{++}})(m_{\text{SO}_4^{-}})]_2}{[(m_{\text{Ca}^{++}})(m_{\text{SO}_4^{-}})]_1} = \frac{K/[(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})]_2}{K/[(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})]_1} = \frac{[(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})]_1}{[(\gamma_{\text{Ca}^{++}})(\gamma_{\text{SO}_4^{-}})]_2};
\]
ove l'indice 1 si riferisce alla soluzione acquosa satura di CaSO$_4$ ed esente da (NH$_4$)$_2$SO$_4$, e l'indice 2 si riferisce alla soluzione contenente anche (NH$_4$)$_2$SO$_4$.

<table>
<thead>
<tr>
<th>C_{CasO_4} moli/l</th>
<th>$C_{(\text{NH}_4)_2\text{SO}_4}$ moli/l</th>
<th>$\frac{K_2}{K_1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01530</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,01327</td>
<td>0,007112</td>
<td>1,196</td>
</tr>
<tr>
<td>0,01218</td>
<td>0,01563</td>
<td>1,449</td>
</tr>
<tr>
<td>0,01131</td>
<td>0,03125</td>
<td>2,058</td>
</tr>
<tr>
<td>0,01057</td>
<td>0,0625</td>
<td>3,304</td>
</tr>
</tbody>
</table>

Esempi 2 e 3: Reazioni di caustificazione del carbonato sodico e di preparazione del solfato ammonico dal gesso.

La soda caustica si prepara oggi soprattutto per elettrolisi di soluzioni acque di NaCl; questo prodotto può anche essere preparato sfruttando la reazione:

(11, V) \[\text{Ca(OH)}_2(c) + \text{Na}_2\text{CO}_3\text{(aq)} \rightleftharpoons 2 \text{NaOH}\text{(aq)} + \text{CaCO}_3(c), \]

che si può anche scrivere:

(12, V) \[\text{Ca(OH)}_2(c) + \text{CO}_3^{--}\text{(aq)} \rightleftharpoons 2 \text{OH}^{--}\text{(aq)} + \text{CaCO}_3(c); \]

\[\Delta H_{25°}^o \approx -1000 \text{ cal/mole.} \]

Se si trascurano gli ioni CO$_3^{--}$ e OH$^{--}$ corrispondenti alle quantità di CaCO$_3$ e rispettivamente di Ca(OH)$_2$ disciolti, rispetto a quelli corrispondenti a Na$_2$CO$_3$ ed a NaOH, la resa all'equilibrio in NaOH rispetto a Na$_2$CO$_3$ iniziale si può scrivere:

(13, V) \[\eta_{\text{NaOH}}^{\text{Na}_2\text{CO}_3} = \eta_{\text{OH}^{--}}^{\text{CO}_3^{--}} = \eta = \frac{\frac{1}{2} m_{\text{OH}^{--}\text{eq.}}}{m_{\text{CO}_3^{--}\text{in.}}}, \]

ove gli indici «eq.» e «in.» si riferiscono rispettivamente alle condizioni all'equilibrio e alle condizioni iniziali.

Poiché per ogni mole di Na$_2$CO$_3$ reagito si formano due moli di NaOH, la (13, V) si può scrivere:

(14, V) \[\eta = \frac{m_{\text{OH}^{--}\text{eq.}}}{2 m_{\text{CO}_3^{--}\text{eq.}} + m_{\text{OH}^{--}\text{eq.}}} = \frac{1}{2 m_{\text{CO}_3^{--}\text{eq.}}/m_{\text{OH}^{--}\text{eq.}} + 1}. \]
Supposto di calcolare il ΔG^o della (12, V) con la relazione:

$\Delta G^o_{(12,V)} = 2\Delta G^o_{\text{H}_2\text{O},m=1} + \Delta G^o_{\text{CaCO}_3} - \Delta G^o_{\text{Ca(OH)}_2,m=1} - \Delta G^o_{\text{Ca(OH)}_2}$,

la costante di equilibrio della (12, V), in presenza di CaCO$_3$ e di Ca(OH)$_2$ come corpi di fondo ($a_{\text{CaCO}_3} = 1; a_{\text{Ca(OH)}_2} = 1$) risulta uguale a:

$K = \exp \left(- \frac{\Delta G^o_{(12,V)}}{RT} \right) = \frac{(a_{\text{OH}^-})^2}{a_{\text{CO}_3^-}} = \frac{(\gamma_{\text{OH}^-})^2(m_{\text{OH}^-})^2}{(\gamma_{\text{CO}_3^-})(m_{\text{CO}_3^-})}$.

Ponendo:

$\frac{(\gamma_{\text{OH}^-})^2}{(\gamma_{\text{CO}_3^-})} = \alpha_y$

dalla (16, V) si ottiene:

$\frac{m_{\text{CO}_3^-,-eq}}{m_{\text{OH}^-,-eq}} = \left(\frac{m_{\text{CO}_3^-,-eq} \cdot \alpha_y}{K} \right)$.

Tenuto presente che:

$m_{\text{CO}_3^-,-eq} = m_{\text{CO}_3^-,-in} - \frac{1}{2} m_{\text{OH}^-,-eq}$.

Combinando le (14, V), (18, V) e (19, V) si ottiene con semplici passaggi:

$\eta = 1/ \left[\frac{1}{2} + \left(\frac{1}{4} + \frac{4\alpha_y}{K} m_{\text{CO}_3^-,-in} \right)^\frac{1}{2} \right]$.

Tenuto conto dei dati riportati nelle tabelle (18, II) e (20, II) si calcola per $T = 25 \, ^\circ\mathrm{C}$: $\Delta G^o_{(12,V)} = -4420$ cal/mol e quindi $K = 1,8 \cdot 10^9$. Sostituendo nella (20, V) si ottiene:

$\eta = 1/ \left[\frac{1}{2} + \left(\frac{1}{4} + 2,2 \cdot 10^{-3} \alpha_y m_{\text{CO}_3^-} \right)^\frac{1}{2} \right]$.

Supponendo che η sia prossimo all'unità, dalla (21, V) si ottiene:

$\eta = 1 - 2,2 \cdot 10^{-3} \alpha_y m_{\text{CO}_3^-}$.

Si osserva che la resa diminuisce all'aumentare della concentrazione in Na$_2$CO$_3$ nella soluzione iniziale.

In pratica, nei processi industriali, la resa assume i seguenti valori al variare della concentrazione iniziale [38]:

$g \text{Na}_2\text{CO}_3/100 \, g$ di sol. 4 8 12 16
$\eta_{\text{Na}_2\text{CO}_3}^{\text{Na}_2\text{OH}}$ % 99 98 94,5 89.
Nei processi industriali si opera con concentrazione iniziale in Na\(_2\)CO\(_3\) di circa 10%. Per aumentare la velocità del processo si opera a circa 90\(^\circ\), tenuto presente anche che la resa all’equilibrio, dato il basso calore del \(\Delta H^o\) di reazione, è poco influenzata dalla temperatura.

Si può osservare che i dati di resa sopra riportati sono deducibili dalle equazioni (20-22, V) solamente se si assume per \(\alpha\), valori sensibilmente diversi dall’unità, anche se si tiene conto del valore della \(K\) corrispondente alla temperatura di esercizio.

Un’altra reazione in parte simile alla (11, V), è la reazione tra gesso (o tra anidrite), CO\(_2\) e NH\(_3\), che viene sfruttata in alcuni impianti per preparare il solfato ammonico:

\[
(23, V) \quad \text{CaSO}_4 (c) + (\text{NH}_4)_2\text{CO}_3 (aq) \rightarrow (\text{NH}_4)_2\text{SO}_4 (aq) + \text{CaCO}_3 (c).
\]

Anche in questo caso, il sale di partenza è poco solubile, ma lo è di più di CaCO\(_3\) (solub. CaSO\(_4\) = 1,5 \cdot 10^{-2} \text{ moli/l a } 25 \ ^\circ\text{C}; \text{solub. Ca(OH)}_2 = 2,3 \cdot 10^{-2} \text{ moli/l a } 25 \ ^\circ\text{C}; \text{solub. CaCO}_3 = 1,4 \cdot 10^{-4} \text{ moli/l a } 25 \ ^\circ\text{C}). A differenza della (11, V), la resa della (23, V), data la stochiometria di questa reazione, non dipende praticamente dalla concentrazione iniziale in (NH\(_4\))\(_2\)CO\(_3\) ed è praticamente unitaria.

Esempio 3. Reazione di esterificazione

Sensibili variazioni dei coefficienti di attività con la composizione del sistema, si riscontrano anche nel caso di sistemi contenenti composti organici molto polari. Ad esempio per la reazione:

\[
(24, V) \quad \text{CH}_3\text{COOH} + \text{C}_2\text{H}_5\text{OH} \rightleftharpoons \text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O},
\]

la grandezza:

\[
(25, V) \quad K_e = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]}\]

assume — operando nelle stesse condizioni di temperatura — i seguenti valori, per alcuni valori del rapporto iniziale [alcool]/[acido] [45]:

\[
\begin{array}{c|ccc}
\text{[alcool]} & 3:1 & 1:1 & 1:3 \\
\text{[acido]} & & & \\
K_e & 2.5 & 3.8 & 4.7
\end{array}
\]

Si deve osservare che la grandezza \(K_e\), definita con la (25, V), non è direttamente calcolabile dai \(\Delta G^o\) di formazione dei composti puri che compaiono nella (24, V).
Esempio 4. Idrogenazione del glucosio

In alcuni casi, \(K_c \) è indipendente dalla composizione del sistema, anche se i coefficienti di attività delle specie reagenti non sono tutti unitari. Ciò si verifica ad esempio quando i coefficienti di attività dei prodotti di reazione sono uguali due a due a quelli dei reagenti. Questo è ad esempio il caso della idrogenazione del glucosio a sorbita,

\[(26, V) \quad \text{CH}_3\text{OH(CCHO)}_4\text{CHO} + \text{H}_2 \rightleftharpoons \text{CH}_2\text{OH(CCHO)}_4\text{CH}_2\text{OH} \]

sebbene queste molecole diano luogo, per la presenza di gruppi —OH, ad importanti fenomeni di associazione; data la natura neutra delle molecole e data la loro costituzione molto simile, si può ritenere che i coefficienti di attività delle due specie siano praticamente uguali tra loro.

5. Impiego dei diagrammi di stato nel calcolo delle rese - Sistemi ternari. — Le difficoltà che si incontrano nella determinazione dei coefficienti di attività nel caso di soluzioni concentrate di elettroliti o di soluzioni di composti che possono comunque dare luogo a fenomeni di associazione, rendono praticamente più interessante la determinazione della resa termodinamica per via grafica, qualora si conoscano i diagrammi di stato dei sistemi considerati.

Per molte reazioni tra elettroliti in soluzioni acquosa, aventi importanza pratica, sono già stati accuratamente determinati i diagrammi di stato, e molti di essi sono riportati nei trattati come il Landolt [50], le International Critical Tables [41], ecc.

L’impiego di questi diagrammi verrà meglio illustrato con alcuni esempi.

Esempio 1. Sistema KCl—MgCl\(_2\)—H\(_2\)O (fig. (6, V))

Questo sistema interessa la produzione di cloruro di potassio partendo dal sale doppio, il minerale carnallite Mg\(_2\)Cl\(_2\)·KCl·6H\(_2\)O (punto D).

Sciogliendo la carnallite in acqua, la composizione del sistema si sposta lungo la retta D A.

Nel tratto DM si avrà una fase solida costituita da una miscela di carnallite e cloruro potassico ed una fase liquida avente la composizione T.

Ad esempio, per la composizione O si ha una miscela di O\(O'/TO'\) parti di fase liquida e di OT/O' parti di fasi solide.

Il rapporto in peso fra i due componenti D e B nel corpo di fondo, sarà dato dal rapporto:

\[(27, V) \quad \frac{q_B}{q_D} = \frac{D O'}{B O'}. \]

Aggiungendo invece tanta acqua alla carnallite in modo da giungere al punto
però sperimentalmente che l’acido nitrico ha la possibilità di diffondere tra le macromolecole della cellulosa e di attaccare tutti i gruppi —OH. L’equilibrio può quindi essere studiato come un equilibrio omogeneo.

Per di più, le interazioni tra HNO₃ ed i gruppi —OH, fanno sì che la cellulosa non si trovi più allo stato puro (non sarà quindi \(a_{\text{cell.}} = 1 \)). Con riferimento a ciascun gruppo —OH la (31, V), si può scrivere:

\[
(32, V) \quad \text{—OH} + \text{NHO}_3 \rightleftharpoons \text{—ONO}_2 + \text{H}_2\text{O}
\]

e:

\[
(33, V) \quad K = \frac{a_{\text{—ONO}_2}a_{\text{H}_2\text{O}}}{a_{\text{—OH}}a_{\text{HNO}_3}}.
\]

Chiamando S i gruppi nitratì per ciascuna unità monomericà di cellulosa (che contiene 3 gruppi —OH), la (33, V) si può scrivere:

\[
(34, V) \quad K = \frac{\gamma_{\text{—ONO}_2} \cdot S \cdot a_{\text{H}_2\text{O}}}{\gamma_{\text{—OH}} (3 - S) \cdot a_{\text{HNO}_3}}.
\]

Ossia, prescindendo dalla variazione del rapporto \(\frac{\gamma_{\text{—ONO}_2}}{\gamma_{\text{—OH}}} \) al variare della composizione del sistema (1), S — e quindi il grado di nitrazione della cellulosa — dovrebbe essere funzione, per una data temperatura, soltanto del rapporto \(a_{\text{H}_2\text{O}}/a_{\text{HNO}_3} \). In pratica, la nitrazione della cellulosa è effettuata con il sistema ternario H₂O-HNO₃-H₂SO₄, ove H₂SO₄ è introdotto allo scopo di rendere più favorita la reazione (in effetti la variazione di entalpia libera del processo di diluizione dell’acido solforico è molto negativa).

Quindi, in tale sistema ternario, il rapporto \(a_{\text{H}_2\text{O}}/a_{\text{HNO}_3} \) dipende anche dalla presenza di H₂SO₄ e non soltanto dal rapporto [H₂O]/[HNO₃].

Sebbene sia possibile valutare mediante misure di tensioni di vapore il rapporto \(a_{\text{H}_2\text{O}}/a_{\text{HNO}_3} \), in presenza di H₂SO₄ e di nitrocellulosa, per seguire l’andamento della reazione da un punto di vista termodinamico, è molto più comodo, anche in questo caso, ricorrere a diagrammi di stato.

Il diagramma di stato per il sistema considerato è riportato in fig. (7, V). In questo diagramma, il grado di nitrazione è indicato come % in peso di azoto contenuto nella nitrocellulosa.

Si osserva che il grado di nitrazione che si può raggiungere dipende soprattutto dalla diluizione, essendo le curve a tenore costante di azoto nella cellulosa praticamente parallele all’asse HNO₃—H₂SO₄. Anche le curve ad \(a_{\text{H}_2\text{O}}/a_{\text{HNO}_3} \) costante, risultano, almeno per certi tratti, paralleli allo stesso asse. È interessante

(1) Si osserva in pratica che questa supposizione è verificata con buona approssimazione.
osservare che per raggiungere il grado massimo di nitrazione (14%), si impiega una miscela nitrante che contiene una certa percentuale di acqua.

![Diagramma ternario per la nitrazione della cellulosa](image)

Fig. (7, V) -Diagramma ternario per la nitrazione della cellulosa — le linee tratteggiate corrispondono a tenori costanti di azoto nella nitrocellulosa (da MILES [63]).

Esempio 3. *Nitrazione della glicerina* (fig. (8, V))

Lo stesso tipo di diagramma ternario (HNO₃—H₂SO₄—H₂O) viene impiegato in altri processi di importanza industriale.

Ad esempio, anche la nitrazione della glicerina:

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{CH}_2\text{ONO}_2 \\
\text{CHOH} + 3 \text{HNO}_3 & \rightleftharpoons \text{CHONO}_2 + 3 \text{H}_2\text{O} \\
\text{CH}_2\text{OH} & \quad \text{CH}_2\text{ONO}_2
\end{align*}
\]

viene effettuata con la miscela solfonitratica; la reazione può essere seguita su un diagramma ternario (vedi fig. (8, V)).

In questo caso, sul diagramma ternario, vengono rappresentate le curve a tenore costante di nitroglicerina disgiolta nella miscela nitrante.

Il diagramma rappresenta quindi un equilibrio fisico, concatenato tuttavia all'equilibrio chimico rappresentato dalla reazione (35, V). La nitrazione si effettua generalmente con miscele contenenti circa 50% in peso di ciascuno dei due
acidi e, alla fine della nitrazione, il punto rappresentativo del sistema si trova in una zona di minimo di solubilità (punto G della fig. (8, V)).

Il diagramma è molto utile per seguire le operazioni di separazione della nitroglicerina dalla miscela nitrante. In alcuni processi, per separare la maggior parte di nitroglicerina, dopo aver raggiunto in un primo tempo il punto G (fig. (8, V)) in cui si ha un minimo di solubilità, la soluzione viene diluita con acqua in modo da raggiungere il punto H ove si ha un’ulteriore separazione di nitroglicerina.

Ricorderemo infine che lo stesso tipo di diagramma ternario viene impiegato nel caso della concentrazione delle soluzioni diluite di HNO₃ con H₂SO₄. Ma poiché tale operazione rappresenta un esempio di distillazione estrattiva, ne ripareremo in altra sede.

6. Impiego di diagrammi di stato nel calcolo delle rese - Sistemi quarternari. — Per i sistemi quarternari occorre, nel caso più generale, ricorrere a rappresentazioni nello spazio che non sono comode. Tuttavia, nel caso dei sistemi che si ottengono sciogliendo in acqua due sali non aventi ioni in comune, è possibile giungere ad una rappresentazione semplificata. Questo caso presenta inoltre un particolare interesse, perché ad esso corrispondono molti esempi di grande importanza pratica nell’industria chimica.

Tra i quattro ioni presenti in soluzione, dovuti alla dissociazione dei due sali, avvengono delle reazioni con formazione di altri sali che possono separarsi in condizioni determinate:

\[(36, V) \quad A \cdot C + B \cdot D \rightleftharpoons A \cdot D + B \cdot C\]
ove \(A \) e \(B = \) cationi e \(C \) e \(D = \) anioni. Le coppie di sali del tipo di quelle che intervengono nella (36, V) si dicono coppie di sali reciproci.

La rappresentazione proposta per questi casi da Jänecke è da ritenersi la più conveniente e si basa su un diagramma quadrangolare (fig. (9, V)).

![Diagram](image)

Fig. (9, V).

Le frazioni moliari dei cationi vengono riportate sui lati orizzontali di un quadrato e quelle degli anioni sui lati verticali. Pur essendo quattro gli ioni presenti: \(A, B, C, D \), essendovi una limitazione ai gradi di libertà del sistema data dalle equazioni:

\[
(37, V) \quad A + B = C + D = 1,
\]

il sistema, astraendo dal solvente, si può rappresentare in un piano come un qualsiasi sistema ternario.

La composizione corrispondente ad un punto qualsiasi interno al quadrato è definita dalle intersezioni sui quattro lati delle parallele tracciate dal punto considerato.

Nel caso che si considerino coppie reciproche di sali a valenza diversa, è necessario riferirsi, nel diagramma di Jänecke, non ai grammaioni (numero di grammi uguali al peso molecolare dell’ione), ma al gramma equivalente (eguale al peso dell’ione diviso per la valenza).

Per definire completamento con il metodo di Jänecke il sistema \(A, B, C, D, H_2O \), dove \(AC \) e \(BD \) sono due coppie reciproche di sali, occorre, per ogni composizione del soluto, conoscere la quantità di acqua contenuta nella soluzione satura.

Se supponiamo di innalzare da ogni punto una verticale avente un’altezza proporzionale al numero di moli di acqua presenti per ogni gramma ione di ioni \((n_A + n_B = 1 \) ossia \(n_C + n_D = 1) \), risulterà che ad ogni area del diagram-
ma nel piano, corrispondente a ciascuno dei sali che possono coesistere in equilibrio con le soluzioni sature, corrisponderà una superficie nello spazio.

Tali superfici saranno limitate da curve, le cui proiezioni ortogonali (fig. 9, V) nel piano, sono date dalle curve E S T G, F S e H T.

L’area A D, E, S, T, G corrisponde alle composizioni (per il soluto) di soluzioni che per evaporazione separano per primo A D, e così via per le altre aree.

In fig. (9, V) sono indicate a tratto sottili le curve (corrispondenti alla proiezione delle linee a uguale livello sulle superfici nello spazio) che indicano le composizioni delle miscele di sali che si sciolgono in un eguale volume di solvente.

Esempio 1. *Sistema KCl—NaCl—KNO₃—NaNO₃—H₂O*

Questo sistema interessa la fabbricazione del nitrato potassico dal salnitro del Cile secondo la reazione:

\[
\text{KCl} + \text{NaNO}_3 = \text{KNO}_3 + \text{NaCl}
\]

Figura (10, V) - Diagramma di stato per il sistema KCl—NaCl—KNO₃—NaNO₃—H₂O; \(T = 25 \, ^{\circ}\text{C} \) (da Reinders [78]; vedi anche Pascal [74]).

Una soluzione contenente un soluto di composizione P, per evaporazione lenta del solvente, separa dapprima KNO₃ come fase solida, di conseguenza, la composizione del soluto si sposta lungo la retta KNO₃—P sino a tagliare la linea S T in P'.

Si separano allora due fasi, KNO₃ e NaCl e, per ulteriore evaporazione, la composizione si sposta lungo la T S sino a che, giunti in S, si separano contemporaneamente NaNO₃, KNO₃, NaCl.

Raggiunto tale punto, la composizione della soluzione non varia sino alla scomparsa totale del solvente.
La composizione P indica che sono presenti in soluzione, per unità di cationi totali
\[n' \text{ ioni K}^+ \]
\[(1 - n') \text{ ioni Na}^+ \]
per unità di anioni totali
\[n'' \text{ ioni NO}_3^- \]
\[(1 - n'') \text{ ioni Cl}^- \]

La stessa composizione della soluzione si ottiene, nel caso considerato (in cui \(n'' > n' > 0.5 \)) sciogliendo le seguenti frazioni molecolari:

\[
\begin{align*}
n' & \quad \text{KNO}_3 & \quad \text{oppure:} & \quad (1 - n'') & \quad \text{KCl} \\
(n'' - n') & \quad \text{NaNO}_3 & \quad \text{oppure:} & \quad (n' - 1 + n'') & \quad \text{KNO}_3 \\
(1 - n'') & \quad \text{NaCl} & \quad \text{oppure:} & \quad (1 - n') & \quad \text{NaNO}_3
\end{align*}
\]

Risulta dal diagramma che, mescolando cloruro potassico e nitrato sodico anche in assenza di solvente, ha luogo, dopo un certo tempo, una trasformazione, perché la coppia \(\text{NaCl} + \text{KNO}_3 \) è più stabile della coppia \(\text{NaNO}_3 + \text{KCl} \). Basta un lievissimo eccesso di KCl per trasformare totalmente il nitrato sodico in potassico.

La reazione è accelerata in presenza di piccole quantità di solventi, ma il risultato è lo stesso, con la sola differenza che si ha una piccola perdita di sostanze che restano in soluzione. La resa, operando con minime quantità di solvente, risulta vicinissima ad uno. Si ha però una miscela di due sali, mentre in pratica interessa averli separati. Ciò può essere ottenuto operando invece con maggiori quantità di solvente, anche se la resa di ogni singola operazione risulta più bassa.

Supponiamo ad esempio di prendere una miscela di parti uguali di cloruro di potassico e di nitrato sodico e di trattarla con 5,7 moli di acqua per ogni molecola di miscela (ossia g \(18 \times 5,7 \) di acqua per ogni 75/2 g di cloruro di potassio più 86/2 g di nitrato sodico). Si ha una soluzione satura che per evaporazione lascia cristallizzare il nitrato potassico.

La composizione della soluzione si sposta lungo la linea Q B sino a incontrare la linea S T nel punto T che per il caso considerato, si trova sulla diagonale DB.

Si saranno separate \(n'_B = \overline{TQ/\overline{TB}} \) moli di nitrato potassico per mole di sali iniziali. La resa in nitrato potassico riferita al nitrato sodico impiegato sarà \(n'_B/0,5 \) ossia 2 \(n'_B \).

Resteranno \((1 - n'_B) \) moli di sali sciolte in 5 \((1 - n'_B) \) moli di acqua.

Se si fosse trattato direttamente \(\frac{1}{2} \) mole di nitrato sodico e \(\frac{1}{2} \) mole di cloruro potassico con 5 \((1 - n'_B) \) moli di acqua, si sarebbe giunti, dopo un certo tempo, allo stesso risultato finale, perché si sarebbero sciolti totalmente il nitrato sodico ed il cloruro potassico, con contemporanea cristallizzazione di nitrato potassico.
Si sarebbe anche in questo caso ottenuta la resa massima n'_B senza però dover evaporare l'acqua e si sarebbe ottenuto del nitrato potassico non inquinato da cristalli di cloruro sodico.

Per ottenere rese maggiori, bisogna operare con un ciclo di riscaldamenti e raffreddamenti in modo da utilizzare lo spostamento della curva di delimitazione delle fasi solide con la temperatura, poiché la solubilità del cloruro sodico varia poco con la temperatura, mentre quella del nitrato varia molto.

Se riscaldiamo la soluzione e la rendiamo satura per aggiunta di altro nitrato sodico, poiché l'area D E S T G D aumenta di superficie a caldo, a scapito delle aree adiacenti, si avrà una cristallizzazione di cloruro sodico, che si può separare.

Attraverso un raffreddamento successivo e aggiunta di cloruro potassico, si separerà nitrato potassico e così via. La resa del ciclo complessivo dovrebbe risultare allora uguale a uno, poiché una piccola quantità di solvente può trasformare quantità quasi-invisibili grandi di nitrato sodico e cloruro sodico, ottenendo i due prodotti separati. In pratica, le rese risultano un poco minori per le impurezze che si accumulano nelle acque madri che si devono di tanto in tanto rinnovare.

La maggior parte dei processi industriali per la produzione di sali puri da miscele più o meno complesse di sali, si basano su procedimenti analoghi, utilizzando sin che è possibile la variazione di solubilità con la temperatura, ma non sempre si hanno condizioni così favorevoli come nel caso precedente.

Esempio 2. *Sistema* NaCl—NaHCO₃—NH₄HCO₃—NH₄Cl—H₂O

Un caso di grandissima importanza pratica è quello della produzione del bicarbonato sodico da quello ammonico, perché è la base del processo Solvay per la produzione industriale della soda.

Esso offre rese assai buone nella separazione di un sale puro in ogni singola operazione, ma la forma del diagramma di stato non permette di eseguire un ciclo di operazioni che consenta di ottenere rese quasi unitarie come si hanno invece nella conversione del salnitro.

Per ottenere la massima resa, occorre mescolare cloruro sodico e bicarbonato ammonico in un rapporto tale (0,48 moli NH₄HCO₃/0,52 NaCl) da ottenere il punto P che si trova sulla intersezione della diagonale (che corrisponde alle miscele di NaCl e NH₄HCO₃) e la retta P′—NaHCO₃ (vedere fig. (11, V)).

Se la quantità di acqua presente è quella minima occorrente per ottenere il punto P′ per ogni grammmomolecola di composizione media P, si separeranno come corpo di fondo:

$$n_c = \frac{P \cdot P′}{A \cdot P′} = \frac{0,814 - 0,48}{0,814} = 0,41 \text{ moli, e resteranno in soluzione:}$$

$$n_s = \frac{A \cdot P}{A \cdot P′} = \frac{0,48}{0,814} = 0,59 \text{ moli.}$$
Poiché le 0,41 moli di bicarbonato sodico sono state ottenute partendo da 0,48 moli di bicarbonato ammonico, la resa massima riferita all’ione bicarbonato sarà:

\[
\eta_{\text{NaHCO}_3} = \frac{0,41}{0,48} = 0,853.
\]

La resa massima, riferita all’ione sodico, risulta un poco minore:

\[
\eta_{\text{NaCl}} = 0,789.
\]

Fig. (11, V) - Diagramma di stato per il sistema NaCl—NaHCO₃—NH₄HCO₃—NH₄Cl—H₂O; \(T = 30 \, ^\circ\text{C} \) (da Baud [4 bis]).

Nel caso prima considerato della conversione del salnitro, la solubilità dei quattro sali è dello stesso ordine di grandezza e la solubilità delle loro miscele è sempre maggiore di quella dei sali puri. Quindi, mescolando soluzioni sature di due qualsiasi dei quattro sali in qualsiasi rapporto, non si ha separazione di fasi solide.

È molto frequente, in pratica, il caso in cui uno dei sali di una delle due coppie reciproche sia poco solubile, e allora si può provocare la sua preparazione per precipitazione, semplicemente mescolando le soluzioni di ciascuno dei sali dell’altra coppia, ottenendo talvolta rese elevatissime.

Nel caso più raro che entrambi i sali di una coppia siano molto solubili ed entrambi quelli dell’altra siano poco solubili, si ha la precipitazione totale dei sali, mescolando tra loro le soluzioni, preparate separatamente, dei sali della coppia solubile, in quantitativi corrispondenti ai rapporti stechiometrici tra i soluti.
BIBLIOGRAFIA

[34] W. D. Harkins, J. Am. Chem. Soc. 33, 1807 (1911).
INDICE DEGLI ARGOMENTI

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetato di etile, esterificazione, dati di equilibrio,</td>
<td>168</td>
</tr>
<tr>
<td>Acetilene,</td>
<td></td>
</tr>
<tr>
<td>da metano,</td>
<td></td>
</tr>
<tr>
<td>aspetti termodinamici della reazione e condizioni operative,</td>
<td>92, 94, 96</td>
</tr>
<tr>
<td>da idrocarburi superiori,</td>
<td>94</td>
</tr>
<tr>
<td>Acido cloridrico di sintesi,</td>
<td></td>
</tr>
<tr>
<td>aspetti termodinamici delle reazione e condizioni operative,</td>
<td>97</td>
</tr>
<tr>
<td>Affinità</td>
<td>6</td>
</tr>
<tr>
<td>Alchilbenzeni, equilibrio chimico tra,</td>
<td>116</td>
</tr>
<tr>
<td>Amagat, legge di, applicabilità per miscele gassose, calcolo del calore di reazione in sistemi gassosi, enunciato, equilibri chimici per sistemi gassosi reali, stima di grandezze termodinamiche per miscele gassose, calore molare, coefficiente di comprimibilità, coefficiente di fugacità, energia interna, entalpia, entropia, fugacità,</td>
<td>143-150, 154, 155, 135, 151-153, 136, 135, 137, 136, 137, 137</td>
</tr>
<tr>
<td>Ammoniaca, aspetti termodinamici della sintesi e condizioni operative,</td>
<td>101, 102, 151-153, 148-150, 155</td>
</tr>
<tr>
<td>costante di equilibrio,</td>
<td></td>
</tr>
<tr>
<td>sistema NH₃(N₂ + 3H₂) a bassa temperatura,</td>
<td></td>
</tr>
<tr>
<td>tonalità termica della reazione di sintesi,</td>
<td></td>
</tr>
<tr>
<td>Attività, definizione, per gas, per soluti, per elettroliti deboli, per elettroliti forti, coefficiente di, coefficienti per HCl (aq),</td>
<td>11, 12, 16, 18, 18, 16, 20, 32</td>
</tr>
<tr>
<td>Beattie - Bridgeman, applicazione dell’equazione a gas reali,</td>
<td>126</td>
</tr>
<tr>
<td>Bennewitz, Rossner, Dobratz, metodo di stima dei cₚ per gas,</td>
<td>70-74</td>
</tr>
<tr>
<td>Benzene da nafteni, aspetti termodinamici della reazione e condizioni operative,</td>
<td>92-94, 105</td>
</tr>
<tr>
<td>Bicarbonato sodico, processo Solvay, diagramma di stato, calcolo delle rese,</td>
<td>177, 178</td>
</tr>
<tr>
<td>Butadiene da buteni, aspetti termodinamici della reazione e condizioni operative,</td>
<td>92-94</td>
</tr>
<tr>
<td>Calore atomico e calore molare dei solidi,</td>
<td>79</td>
</tr>
<tr>
<td>Calore di idrogenazione di olefine,</td>
<td>108</td>
</tr>
<tr>
<td>Calore di reazione in sistemi gassosi reali, applicando la legge di Amagat, influenza della pressione, per la sintesi di NH₃ e CH₃OH a 300 atm e 400 °C, in sistemi liquidi, influenza della composizione, nella reazione tra NH₃ e HNO₃,</td>
<td>154, 155, 155-157, 155, 163, 163</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calore integrale di soluzione, esempi, 160, 161
Calore latente di vaporizzazione, stima, 80-82, 132
Calore molare dei gas, influenza della pressione, stima per composti organici gassosi, stima per miscelle gassose, secondo Amagat, secondo Dalton, con il metodo delle condizioni pseudocritiche, tabella per gas e vapori più comuni, per l'idrogeno, 68
Calore molare dei liquidi, stima, 74-79
Calore molare dei solidi, stima, 79
Calore non compensato, 2
Calori parziali molari, nel sistema H₂O-H₂SO₄, 162
Calore specifico, di acidi in soluzione acquosa, esempi per alcuni liquidi, 79
Carbocasioni primari, secondari, terziari, stabilità relativa, 109, 110
Carnallite, diagramma di stato: carnallite-KCl-MgCl₂·H₂O 170
Caustificazione di Na₂CO₃, rese e condizioni operative, 167, 168
Cellulosa, nitrazione della, diagramma operativo, 172
Clausius Clapeyron, equazione, 80, 82
Clorurazione, reattività di olefine nella reazione di, 114
Clorurazione del metano, dati termodinamici, 117
Cloruro di potassio da carnallite, calcolo delle rese, diagramma di stato, 169, 170
Coeficiente di attività - vedi attività Coeficiente di comprimibilità, critico, critico (tabella) definizione, errori medi nella valutazione, pseudocritico, stima per le miscelle gassose, secondo Amagat, secondo Dalton, con il metodo delle condizioni pseudocritiche, tabella per gas e vapori più comuni, per l'idrogeno, 68
Confronto di fagilità - vedi fagilità Comprimibilità - vedi coefficiente Condizioni operative - vedi reazioni Condizioni pseudocritiche, metodo delle, applicabilità del metodo, equilibri chimici in sistemi gassosi reali, stima col metodo di Kay, stima del coefficiente di fagilità per miscelle gassose, Contributi di gruppo - vedi entalpia, entalpia libera, gruppi, fenomeni vibrazionali.
Costanti critiche, tabella, 124, 125
Costanti di disociazione di acidi, calcolo da dati termodinamici, 33
Costante di equilibrio - vedi equilibrio Cracking catalitico di paraffine, meccanismo, 110
Criterio di equilibrio termodinamico, 1

Dalton, legge di, applicabilità, 143-150 enunciato, 138 equilibri chimici in sistemi gassosi reali, 153 stima di grandezze termodinamiche per miscelle gassose, calore molare, coefficiente di comprimibilità, coefficiente di fagilità, energia interna, entalpia, entropia, fagilità, 139-140
Deidrogenazione di idrocarburi, aspetti termodinamici e condizioni operative, 92-95

Densità di liquidi puri, stima, 127
ridotta, 127

Dulong et Petit, regola di, 79

Ebullizione - vedi temperatura

Einstein, funzione di, 72

Elettrochimica, aspetti termodinamici di processi, vedi anche processi elettrochimici, 31

Energia, di legame, 112-115
di dissociazione omolitica di legami C-H (tabella), 112
di altri legami (tabella), 114
di dissociazione eterolitica (CH₄, H₂O), 115
di risonanza - vedi risonanza, interna,
influenza della pressione per gas puri, 129-131
stima per miscelle gassose, secondo Amagat, 136
secondo Dalton, 140
secondo il metodo delle condizioni pseudocritiche, 142

Energia libera, vedi anche entalpia libera,

Entalpia, di formazione, di elettroliti in soluzioni acquisite, 65
di reazione, 26-28
idratazione di olefine 116
influenza della temperatura 36
reazione tra HNO₃ e NH₃ 163
stima da due valori di K 37
di soluzione, 160
integrale, di elettroliti, 161
influenza della pressione, 129-131
standard di formazione, 24-26
per elettroliti e ioni in soluzione acquosa, 62
per sostanze inorganiche liquide e gassose, 63
per sostanze inorganiche allo stato cristallino, 64
per sostanze organiche gassose, stima mediante contributi di gruppo (tabelle) 55-61
standard di reazione, 26-28
clorurazione del CH₄, 117
deidrogenazione di alcoli, 117
stime per le miscelle gassose, secondo Amagat, 136
secondo Dalton, 140
con il metodo delle condizioni pseudocritiche, 142

Entalpia libera, di reazione, 21-24
standard di reazione, 21-24, 26-28
influenza della temperatura, 35
misura elettrochimica, 31
utilizzazione per stabilire le condizioni operative di un processo, 91-102
standard di formazione, 24-26
per elettroliti e ioni in soluzione acquosa, 29-33, 62
per sostanze gassose (tabelle), 48
per sostanze inorganiche liquide e gassose, 63
per sostanze inorganiche allo stato cristallino, 64
per sostanze organiche condensate, stima, 51-53
per sostanze organiche in soluzione, stima, 53, 54
per sostanze organiche gassose, diagramma di Francis, 103
stima contributi di gruppo (tabella), 42-51

Entropia, creazione di, 1-3
influenza della pressione, 129-132
scambiata con l’ambiente, 2
standard di formazione, 24-28
standard di reazione, 26-27
clorurazione del CH₄, 117
dipendenza dalla variazione del n° di moli, 117
influenza della temperatura, 36
stima per le miscelle gassose, secondo Amagat, 137
secondo Dalton, 140
con il metodo delle condizioni pseudocritiche, 142

Equazione di stato per gas reali, 121, 122
generalizzata, 123
Equilibri chimici,
in sistemi condensati, 164-178
in sistemi eterogenei, 8-9
in sistemi gassosi reali, 150-154
in sistemi omogenei, 8
cautificazione di Na₂CO₃, rese e condizioni operative, 166-168
esterificazione (acetato di etile), dati di equilibrio, 168
idrogenazione del glucosio, 169
solfato ammonico da CaSO₄, resa, 168
solubilità del CaSO₄ in presenza di (NH₄)₂SO₄, 165, 166
vedi anche sistemi condensati ternari e quaternari,

Equilibrio,
apparente, 3, 4
costante di, 21, 22
errore nella valutazione della K di equilibrio, 90
influenza della temperatura, 36, 37

Equilibrio fisico, liquido-vapore,
in presenza di incondensabili ad alta pressione, 147-150
per il sistema etano-n-ceptano (diagramma P,T), 141

Equilibrio termodinamico, 1-3, 6-7, 8-9, 24

Errore del ΔGº: influenza sull'errore della K di equilibrio e delle rese, 90

Esterificazione, acetato di etile, dati di equilibrio, 168

Etilbenzene,
aspetti termodinamici della reazione di deidrogenazione a stirene, 116, 117

Etilene,
reattività nella ossidazione a acetaldeide, 115
reattività nella ossidazione a ossido di etilene, 114

Etilene da etano,
aspetti termodinamici e condizioni di reazione, 92-94
da idrocarburi superiori, 95

Fattori di simmetria di molecole, 40, 41

Fenomeni vibrazionali,
contributo al calore molare (tabella), 73

Francis,
diagramma di, 103

Franklin,
metodo di contributi di gruppo, 54

Frequenze caratteristiche di vibrazioni di legami chimici,
composti gassosi (tabella), 72
composti liquidi (tabella), 76

Fugacità,
definizione, 10
influenza della pressione per sostanze condensate, 14, 15
in soluzioni ideali, 19
in soluzioni reali, 20
coefficienti di, 12
definizione, 12
generalizzati per gas puri, 128-129
stima per le miscele gassose, secondo Amagat, 137
secondo Dalton, 139
con il metodo delle condizioni pseudocritiche, 142

Gas di sintesi,
aspetti termodinamici e condizioni operative per la preparazione da idrocarburi, 91-92, 97-101

Gas reali,
equazioni di stato, 121, 122
equazione generalizzata, 123

Gibbs,
funzione di - vedi entalpia libera,

Glicerina,
nitrazione, diagramma operativo, 173

Henry,
legge di, 17

Idrogenazione,
del glucosio, 169
calore di, di olefine, tabella, 108

Iperconjugazione, 107, 108

Joffe,
equazione di, 142
esempi di applicazione, 148-151

Kirchoff,
legge di, 36
Metanolo, sintesi, aspetti termodinamici e condizioni operative, 101, 102
costante di equilibrio, 152, 153
tonalità termica, 155

Neumann e Kopp, regola di, 79
Nitrato ammonico, da NH₃ e HNO₃, tonalità termica in funzione della concentrazione di HNO₃, 163
Nitrato di potassio, da salnitro del Cile, diagramma di stato KCl-NaNO₂-KNO₂-NaCl-H₂O e calcolo delle rese, 175-177
Nitrazione della cellulosa, rese, diagramma operativo, 170-172
Nitrazione della glicerina, rese, diagramma operativo, 172-173

Ossidazione, reattività nella, dell'acetaldeide, 113, 114
dell'isopropilbenzene, 113
di metano e paraffine, 113-115
di olefine, 114
Ossido di azoto da aria, dati termodinamici, 96
Polimerizzazione cationica dell'isobuten, 110
Potenziale, chimico, 7
termodinamico, 4

Pressione, critica (tabella), 124-125
influenza sul calore molare, energia interna, entalpia, entropia di fluidi puri reali, 129-134
pseudocritica, 142
ridotta, 123
Processi elettrochimici, aspetti termodinamici di, 118-119

Raoult, legge di, esempio di applicazione, 148-149
Reazioni, scelta delle condizioni operative per reazioni, endotermiche, 91-96
esotermiche interessate da equilibri, 101, 102
esotermiche molto favorite, 96-101
termodinamicamente favorite o non, 29
Redlich - Kwong, applicazione dell'equazione a gas reali, 126
Ress, all'equilibrio, 87-88
calcolo in un processo chimico, 87
errore nella valutazione, 90
in funzione del tempo, per prodotti termodinamicamente instabili, 95
Rese, calcolo mediante impiego di diagrammi di stato, 169-178

Riferimento, stati di, 12-18, 20
per elettroliti deboli in soluzione, 17-18
per elettroliti forti in soluzione, 18
per gas disolti, 17
per soluzioni di non elettroliti, 15-16
per sostanze allo stato puro, 20
per sostanze condensate, 14-18
per sostanze gassose, 12

Risonanza, energia di, (tabella), 106

Sakiadis, Coates, stima del calore molare a V costante dei liquidi, 75-77
Serie elettrochimica degli elementi (tabella), 34
Simmetria, fattore di, 40-41
Sistemi all'equilibrio, eterogenei, 8, 9
omogenei, 8
Sistemi in evoluzione e all'equilibrio, 1-3
Sistemi condensati, a più componenti, 159
calori integrali di soluzione, 160
quaternari, diagramma di stato, calcolo delle rese, 173-178
nitrato di potassio, 175-177
bicarbonato sodico (Solvay), 177-178
ternari, diagrammi di stato, calcolo delle rese, 169-173
cloruro di potassio da Carnallite, 169-170
nitrazione della cellulosa, 170-172
nitrazione della glicerina, 172-173
Sistemi gassosi, a più componenti, calori di reazione, 134-150
equilibri chimici, 150-154
in presenza di fasi condensate sistema NH₃-(N₂ + 3H₂), in presenza di fase condensata, 147-150
sistema CO₂-n-C₄H₁₀, coefficiente di comprimibilità, 144
stima delle proprietà termodinamiche secondo Amagat, 135
secondo Dalton, 138
con il metodo delle condizioni pseudocritiche, 140
scelta del metodo, 143-147, 149-150
Soda caustica, da carbonato - vedi caustificazione elettrolitica, aspetti termodinamici, 118
Soda Solvay, diagramma di stato NaCl-NaHCO₃-NH₄HCO₃-NH₄Cl-H₂O e rese, 177-178
Solfato ammonico da CaSO₄, resa, 168
Solfato di calcio, solubilità in presenza di (NH₄)₂SO₄, 165, 166
Soluzioni, ideali 18-20
reali, 20
vedi anche - sistemi condensati
Stabilità relativa, di idrocarburi ed altri composti organici, 102-109
diagramma di Francis, 103
di radicali e ioni, 109-115
iperconiugazione, risonanza, 107, 108, 104-106
Stabilità termodinamica di composti rispetto agli elementi, 29

Stati corrispondenti, applicazione del metodo a gas reali, 122
Stati di riferimento - vedi Riferimento

Temperatura, critica (tabella), 124-125
di ebollizione di alcune sostanze (tabella), 124-125
pseudocritica, 142
ridotta, 123

Tensione di vapore, diagramma di Cox, 84
equazione di Clausius-Clapeyron, 82
equazione di Miller, 85
regola di Trouton, 83
stima della, per liquidi puri, 82-85

Tensioni standard, calcolo dai dati termodinamici, di ossidazione, 33-36
variazione con la temperatura, 119

Tonalità termica, a T e V costanti, 157
a T e P costanti, 154
effetto della pressione, 156
vedi anche entalpia di reazione,

Trouton, regola di, 83

Van der Waals, applicazione dell’equazione a gas reali, 126
Van Krevelen, Chermin, metodo dei contributi di gruppo, 40
Van’t Hoff, equazione di, 35
Velocità di reazione, 3-4

Wada, stima dei cᵦ dei liquidi, 78
Watson, stima del ΔHₑ₀, 81
INDICE DEGLI AUTORI

Antoine, C., 83
Arnett, R.L., 39, 53, 54, 61, 66, 80, 155

Baud, P., 178
Barr-David, F.H., 141
Bartlett, E.P., 145
Bartholomé, E., 94
Beattie, J.A., 121
Beckett, C.W., 66, 68
Beilstein, 61, 66
Benedict, W.S., 66, 68, 121
Bennewitz, K., 70, 71
Bird, R.B., 122
Bixler, G.H., 94
Braun, R.M., 39, 53, 54, 61, 66, 80, 155
Bridgeman, C., 121
Brix, P., 114
Brown, W.C., 107

Calingaert, G., 83
Casale, C., 147, 148, 149
Chermin, H.A.G., 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 66
Chilton, C.H., 53, 66, 78, 79
Coates, J., 74, 75, 76, 77, 78
Coberly, C.W., 94
Comings, E.W., 126, 151
Cottrell, T.L., 112, 114
Cox, E.R., 83, 84
Cremer, H.W., 82
Curtiss, C.F., 122

Davies, T., 82
Davis, D.S., 83
De Donder, Th., 1, 6
Defay, R., 1, 6, 12, 18

Dewar, M.J.S., 108
Dobratz, C.J., 70, 71
Dodge, B.F., 153
Dolliver, M.A., 108
Dreisbach, R.R., 61, 80

Eucken, A., 164, 166
Evans, W.E., 29, 32, 33, 36, 39, 62, 63, 64, 65, 66, 78, 79, 80, 117, 161, 163
Edmister, W.C., 122
Ewald, L., 114

Fano, L., 66, 68
Francis, 102
Franklin, J.L., 54, 55, 61
Freeman, M.P., 94

Gamblin, W.R., 66, 72, 74, 78
Gaydon, A.G., 114
Giauque, W.F., 162
Gladish, H., 94
Glasstone, S., 73
Gonikberg, M.G., 154
Greco, G., 33, 147, 148, 149
Greene, E.F., 114
Greenkorn, R.A., 123
Gresham, T.L., 108

Harkins, W.D., 166
Hays, G.E., 98, 99, 100
Herzberg, G., 76, 114
Hilsenrath, J., 66, 68
Hipple, J.A., 112, 115
Hirschfelder, J.O., 122
Il Prof. Giulio Natta, Premio Nobel per la Chimica, si è laureato in ingegneria chimica al Politecnico di Milano nel 1924.
E' Direttore dell'Istituto di Chimica Industriale del Politecnico ed è ordinario di Chimica Industriale.
Dal 1925 al 1932 è stato professore incaricato di Chimica Analitica nel Politecnico di Milano e dal 1929 al 1933 anche professore incaricato di Chimica Fisica nell'Università di Milano; dal 1933 al 1935 è stato professore di ruolo di Chimica Generale e professore incaricato di Chimica Fisica nell'Università di Pavia e dal 1935 al 1937 professore ordinario di Chimica Fisica all'Università di Roma; poi, per un anno, è stato professore ordinario di Chimica Industriale al Politecnico di Torino, ritornando poi nel 1939 al Politecnico di Milano dove è tuttora.
Nella sua carriera scientifica il Prof. Natta si è occupato in un primo tempo di strutturistica e successivamente anche dello studio e della realizzazione su scala industriale di numerose reazioni (per lo più catalitiche) e processi, propri della grande industria chimica.
E' stato ad esempio il realizzatore dei primi impianti italiani per la sintesi del metanolo, con procedimenti estesi poi anche all'estero, ed anche dei primi impianti di gomma sintetica in Italia.
Oltre a questi argomenti, si è occupato anche della produzione di gas di sintesi da metano e da combustibili solidi, del frazionamento di miscele di idrocarburi aventi punti di ebollizione molto vicini, dell'ossidazione del metanolo a formaldeide, di reazioni di ossosintesi nonché di processi di polimerizzazione.
In quest'ultimo campo, le ricerche più importanti del Prof. Natta riguardano i processi di polimerizzazione ionica-coordinata e le polimerizzazioni stereospecifiche, che hanno consentito di ottenere intere classi di polimeri del tutto nuove come i polimeri stericamente ordinati di α-olefine, di diolefine, e di monomeri non idrocarburici ed i polimeri otticamente attivi ottenuti per sintesi asimmetrica.
Alcuni di questi polimeri come il polipropilene isotattico, il polibutadiene 1,4 cis ed i copolimeri etilene-propilene, hanno già assunto notevole importanza anche sul piano industriale, per la preparazione di materie plastiche, fibre ed elastomeri.
Il Prof. Natta è autore di circa 650 pubblicazioni scientifiche e di 150 brevetti industriali.
Nella sua carriera ha ricevuto oltre al Premio Nobel, numerosi riconoscimenti italiani e stranieri. In particolare si può ricordare che è membro nazionale dell'Accademia dei Lincei, membro dell'Academie des Sciences de l'Institut de France, membro a vita dell'Accademia delle Scienze di Nuova York, socio onorario di diverse società chimiche straniere. E' stato anche insignito di 5 lauree ad honorem e, dal Presidente della Repubblica, della medaglia d'oro per i benemeriti della Scuola, della Cultura e dell'Arte.

Il Prof. Italo Pasquon si è laureato in ingegneria chimica al Politecnico di Milano nel 1953.
Dal 1956 al 1963 è stato Professore incaricato di chimica industriale nel Politecnico.
Ha conseguito la libera docenza in chimica industriale nel 1960.
Ha sempre svolto la sua attività scientifica nell'Istituto di Chimica Industriale del Politecnico, diretto dal Prof. Giulio Natta, occupandosi principalmente dello studio sperimentale e teorico di processi catalitici aventi importanza industriale, quali la polimerizzazione stereospecifica, la copolimerizzazione di monomeri idrocarburici, la sintesi del metanolo, l'ossidazione del metanolo a formaldeide, ecc.
Egli è autore di circa 100 lavori tra pubblicazioni scientifiche e brevetti industriali.