Spinelli del cobalto trivalente:
cobaltito cobaltoso e cobaltito di zinco

NOTA
DI
G. NATTA e M. STRADA

ROMA
DOTT. GIOVANNI BARDI
TIPOGRAFI DELLA R. ACCADEMIA DEI LINCEI
1928
Chimica. — Spinelli del cobalto trivalente: cobaltito cobaltooso e cobaltito di zinco (1). Nota di G. Natta e M. Strada, presentata (2) dal Socio G. Brunì.

Sono indicati col nome generico di spinelli, come è noto, i composti tra ossidi di metalli bivalenti ed ossidi di metalli trivalenti, che rispondono alla formula generale $\text{Me}^{++}\text{O Me}_2^{+++}\text{O}_3$ e che cristallizzano nel sistema cubico nella classe esacisottaedrica, come lo spinello propriamente detto $\text{MgAl}_2\text{O}_4 = \text{MgO} \cdot \text{Al}_2\text{O}_3$.

Si conoscono spinelli di numerosi metalli bivalenti, magnesio, zinco, ferro (ferroso), nichelio, manganese (manganoso), cadmio, di diversi metalli trivalenti: alluminio, cromo (cromico), ferro (ferrico).

Non tutti i possibili composti della formula $\text{Me}^{++}\text{O Me}_2^{+++}\text{O}_3$ possono però ritenersi spinelli, in quanto la possibilità di cristallizzare nel sistema cubico è subordinata a certe relazioni che debbono sussistere tra i diametri degli ioni metallici. È per questa ragione che non si conoscono spinelli di metalli alcalino terrosi i cui ioni bivalenti hanno un diametro atomico superiore ai 2.10 Å, a differenza degli ioni manganese, ferro, nichelio, zinco,

(1) Lavoro eseguito nel Laboratorio di Chimica Generale del R. Politecnico di Milano.
(2) Nella seduta del 1º giugno 1928.
magnesio, cadmio bivalenti, che posseggono tutti diametri ionici inferiori e compresi tra 1.50 e 2.10 Å.

Si hanno anche spinelli nei quali tanto l’ione bivalente che quello trivalente provengono dallo stesso elemento: la magnetite ne dà un esempio. Uno di noi ha anche dimostrato (1) che l’ossido salino di cobalto Co₃O₄ è isomorfo con la magnetite e cristallizza come questa nello stesso reticolo degli spinelli, a differenza dell’ossido salino di manganese, che, pur avendo un reticolo che presenta molte analogie con quelli degli spinelli, cristallizza nel sistema tetragonale.

Tra i composti del cobalto bivalente, corrispondenti alla formula CoMe₂O₄, noi riteniamo molto probabile, date le dimensioni dell’ione Co⁺⁺, che qualcuno (come il ferrito e l’illuminato cobaltilo) cristallizzino pure nella classe degli spinelli, non se ne ha però nessun accenno nella letteratura. La nostra supposizione si basa sulle dimensioni dell’ione cobalto bivalente (intermedi a quelle degli ioni Fe⁺⁺ e Mg⁺⁺).

Siccome d’altro lato le dimensioni del cobalto trivalente non possono essere molto diverse da quelle del ferro trivalente (come si può dedurre dall’esame delle celle elementari del Fe₃O₄ e del Co₃O₄, e come si può prevedere considerando che la contrazione del raggio atomico per la cessione di un’ulteriore elettrone valenza è all’incirca uguale per tutti gli ioni di egual carica) è probabile, data l’esistenza di spinelli ferrici, che anche gli eventuali composti dell’ossido cobaltilo con degli ossidi di ioni bivalenti, quali lo zinco ed il magnesio, abbiano pure la struttura degli spinelli. La stabilità dell’ossido cobaltilo, che allo stato puro si decomponga già a temperatura di poco superiore a 250°, come abbiamo dimostrato in una precedente Nota (2), farebbe però ritenere difficile od impossibile la preparazione di spinelli del cobalto trivalente, se non ne rendesse possibile l’esistenza la grande stabilità che posseggono in genere tutti gli spinelli.

Noi abbiamo ottenuto il composto ZnO·Co₃O₄ evaporando una soluzione contenente due molecole di nitrito cobaltoso per ognuna di nitrito di zinco e calcinando il residuo sino ad 800°.

In questo modo l’ossido cobaltilo, che si forma come prima fase instabile nella decomposizione a bassa temperatura del nitrito, si combina, appena formato, con lo zinco per dare lo spinello stabile, ed allora il cobalto trivalente non viene più ridotto, nemmeno per calcinazione a temperature molto alte.

Il meccanismo della formazione del cobaltilo di zinco è lo stesso che porta, nella decomposizione pirogenica del nitrito puro, alla formazione del cobaltilo cobaltoso, avendo noi dimostrato che nella decomposizione del nitrito non si ottiene mai, neppure a bassa temperatura, dell’ossido cobaltoso puro, ma sempre dell’ossido salino.

Lo spinello di zinco appare come una massa dura, compatta, specialmente se scaldata oltre i 1000°. di colore verde cupo, quasi nero.

Per stabilire la sua costituzione e dimostrare che non si tratta di una miscela meccanica o di una soluzione solida di ossido di zinco e di ossido salino di cobalto, abbiamo determinato analiticamente l’ossigeno attivo con il metodo di Bunsen: per i perossidi e nella soluzione ottenuta abbiamo separato il cobalto come cobaltinitritopotassico, lo zinco come fosfato, determinandoli poi l’uno come cobalto metallico, l’altro come pirofosfato.

Il rapporto tra il cobalto e lo zinco non ha particolare importanza in quanto dipende solo dalle quantità di nitrati usati nella preparazione del composto; quello che invece ha interesse è il rapporto tra ossigeno attivo e cobalto che permette di stabilire la valenza di quest’ultimo.

In base all’analisi eseguite sui prodotti provenienti da diverse preparazioni si è sempre trovato che il cobalto è tutto presente come cobalto trivalente. Nella seguente tabella sono riportati i risultati dell’analisi di un prodotto calcinato ad 800°. L’ossigeno non attivo è stato calcolato in base alla percentuale trovata di zinco e di cobalto.

Tabella I.

<table>
<thead>
<tr>
<th></th>
<th>% trovati</th>
<th>% teorici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>47.15</td>
<td>47.696</td>
</tr>
<tr>
<td>Zn</td>
<td>25.70</td>
<td>26.435</td>
</tr>
<tr>
<td>Ossigeno attivo</td>
<td>6.39</td>
<td>6.467</td>
</tr>
<tr>
<td>Ossigeno non attivo</td>
<td>19.29</td>
<td>19.402</td>
</tr>
<tr>
<td>Totale</td>
<td>98.53</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Viene così dimostrato che il prodotto considerato corrisponde alla formula Zn Co₂O₄, e che non è una miscela o soluzione solida di ZnO e Co₃O₄; che non sia una miscela di ZnO e Co₂O₃ lo esclude la instabilità del Co₂O₃ alla temperatura a cui è stato ottenuto. Per dimostrare poi che non è una soluzione solida (*a priori* poco probabile) di ZnO in Co₂O₃, casualmente corrispondente a quella composizione, abbiamo analizzato il prodotto ottenuto per calcinazione a più bassa temperatura di una miscela di una molecola di nitrato di zinco con quattro molecule di nitrato di cobalto. L’ossigeno attivo risultava notevolmente inferiore a quello che risulterebbe se tutto il cobalto fosse presente nella forma trivalente e circa uguale a quello che si calcola per una miscela di Zn Co₂O₄ e di Co₃O₄. Vedremo in seguito la conferma röntgenografica della costituzione del cobaltito di zinco.
L'aver stabilito che il composto risponde alla formula ZnCo₂O₄ non basta per poter affermare che questo sia uno spinello.

Il prodotto da noi ottenuto non presenta cristalli singoli sufficientemente sviluppati da poter essere esaminati cogli ordinari mezzi della cristallografia. Lo abbiamo perciò esaminato coi raggi X col metodo delle polveri.

I fotogrammi ottenuti colla radiazione di un anticatodo di nichelio di un tubo Phylips ad elettronì, ad anticatodi intercambiabili, presentano quasi tutte le linee dei fotogrammi del Co₃O₄ puro, in posizione praticamente invariata, ma mostrano qualche differenza nella intensità delle linee corrispondenti. Si osserva ad esempio che la faccia (0 0 4), produce una riflessione più debole nello spinello di zinco, più intense le (2 4 6), (8 2 2), (6 6 0).

Per dimostrare anche röntgenograficamente che il prodotto esaminato non era una miscela di Co₃O₄ e ZnO abbiamo per contro-prova fotografato con lo stesso anticatodo una miscela meccanica di quantità equivalenti di questi. Il fotogramma così ottenuto presenta le linee del ZnO e del Co₃O₄ perfettamente distinguibili.

In tabella I sono rappresentati schematricamente i fotogrammi del ZnO, del Co₃O₄, del ZnCo₂O₄ e della miscela meccanica ZnO + Co₃O₄; non è stata esaminata la miscela meccanica ZnO + CoO₃, perché l'ossido cobaltico, che presenterebbe inoltre linee totalmente diverse, non poteva, come già si è detto, essere presente allo stato incombustibile nel prodotto ottenuto ad alta temperatura.

Nella tabella II sono paragonati i fotogrammi del Co₃O₄ e del ZnCo₂O₄; entrambi sono cubici e posseggono un lato della cella elementare identico, entro una approssimazione di 0,005 Å, ed uguale a 8,06 Å. Risulta quindi per il Co₃O₄ un lato della cella elementare leggermente superiore a quello (8,02) pubblicato nella precedente Nota sull'ossido salino di cobalto. La differenza è dovuta al fatto che si è in questo caso usata una camera fotografica diversa e di maggior precisione; si deve ammettere quindi come più esatto il valore dato ora.

Come volume della cella elementare si calcola per il Co₃O₄ 253,61.10⁻²⁴ c.m. e come densità 6,11. Per il ZnCo₂O₄ risulta d = 6,27.

Già dalla analogia delle celle elementari del Co₃O₄ e del ZnCo₂O₄, si deve ammettere che questi due composti siano isomorfi, come appare anche logico dalla analogia tra gli ioni Co⁺⁺ e Zn⁺⁺; infatti l'ione cobaltoso secondo Goldschmidt (1) ha un raggio atomico di 0,82 Å, quello di zinco di 0,83 Å. Sebbene noi riteniamo (2) che il raggio atomico dello zinco bivalente sia alquanto inferiore al valore supposto da Goldschmidt, ciò non toglie che le analogie tra le dimensioni di questi due ioni siano grandissime.

<table>
<thead>
<tr>
<th>$h_1 h_2 h_3$</th>
<th>Sen θ_a</th>
<th>d</th>
<th>a</th>
<th>Intensità</th>
<th>Sen θ_a</th>
<th>d</th>
<th>a</th>
<th>Intensità</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oss.ta</td>
<td></td>
<td></td>
<td>calc.ta</td>
<td>oss.ta</td>
<td></td>
<td></td>
<td>calc.ta</td>
</tr>
<tr>
<td>202</td>
<td>0.2924</td>
<td>2.834</td>
<td>8.02</td>
<td>m</td>
<td>213</td>
<td>0.2924</td>
<td>2.834</td>
<td>8.02</td>
</tr>
<tr>
<td>113</td>
<td>0.3420</td>
<td>2.420</td>
<td>8.025</td>
<td>ff</td>
<td>576</td>
<td>0.3420</td>
<td>2.420</td>
<td>8.025</td>
</tr>
<tr>
<td>004</td>
<td>0.4115</td>
<td>2.012</td>
<td>8.04</td>
<td>m</td>
<td>345</td>
<td>0.4115</td>
<td>2.012</td>
<td>8.04</td>
</tr>
<tr>
<td>224</td>
<td>0.5043</td>
<td>1.645</td>
<td>8.04</td>
<td>m</td>
<td>245</td>
<td>0.5043</td>
<td>1.645</td>
<td>8.04</td>
</tr>
<tr>
<td>151</td>
<td>0.5336</td>
<td>1.551</td>
<td>8.06</td>
<td>f</td>
<td>378</td>
<td>0.5336</td>
<td>1.551</td>
<td>8.06</td>
</tr>
<tr>
<td>440</td>
<td>0.5824</td>
<td>1.422</td>
<td>8.05</td>
<td>fff</td>
<td>1825</td>
<td>0.5824</td>
<td>1.421</td>
<td>8.045</td>
</tr>
<tr>
<td>351</td>
<td>0.6087</td>
<td>1.360</td>
<td>8.05</td>
<td>dd</td>
<td>47</td>
<td>0.6087</td>
<td>1.360</td>
<td>8.05</td>
</tr>
<tr>
<td>260</td>
<td>0.6495</td>
<td>1.276</td>
<td>8.06</td>
<td>d</td>
<td>196</td>
<td>0.6495</td>
<td>1.275</td>
<td>8.06</td>
</tr>
<tr>
<td>333</td>
<td>0.6720</td>
<td>1.216</td>
<td>8.06</td>
<td>m</td>
<td>285</td>
<td>0.6720</td>
<td>1.216</td>
<td>8.06</td>
</tr>
<tr>
<td>246</td>
<td>0.7716</td>
<td>1.073</td>
<td>8.05</td>
<td>mf</td>
<td>311</td>
<td>0.7716</td>
<td>1.073</td>
<td>8.05</td>
</tr>
<tr>
<td>713</td>
<td>0.7906</td>
<td>1.46</td>
<td>8.05</td>
<td>fff</td>
<td>749</td>
<td>0.7906</td>
<td>1.046</td>
<td>8.05</td>
</tr>
<tr>
<td>533</td>
<td>0.8216</td>
<td>1.006</td>
<td>8.06</td>
<td>mf</td>
<td>645</td>
<td>0.8216</td>
<td>1.006</td>
<td>8.06</td>
</tr>
<tr>
<td>822</td>
<td>0.8737</td>
<td>0.818</td>
<td>8.06</td>
<td>mde</td>
<td>193</td>
<td>0.8737</td>
<td>0.948</td>
<td>8.06</td>
</tr>
<tr>
<td>660</td>
<td>0.8901</td>
<td>0.893</td>
<td>8.06</td>
<td>f</td>
<td>518</td>
<td>0.8901</td>
<td>0.930</td>
<td>8.06</td>
</tr>
<tr>
<td>555</td>
<td>0.9180</td>
<td>0.903</td>
<td>8.06</td>
<td>ff</td>
<td>620</td>
<td>0.9180</td>
<td>0.903</td>
<td>8.06</td>
</tr>
</tbody>
</table>

Per confermare la struttura del Zn Co$_3$O$_4$ abbiamo calcolato l'intensità teorica delle linee dei fotografamì mediante la formula semplificata:

$$I = \sim \frac{n}{h^2 + k^2 + l^2} S^n$$

dove n è il numero dei piani cooperanti alla riflessione della faccia (h_1, h_2, h_3) ed S è il fattore di struttura:

$$S = \sum N e^{-\frac{2\pi}{h^2 + k^2 + l^2} (x_n + y_n + z_n)}$$

dove N_n è il numero di elettroni non nucleari dell'ione aventi le coordinate x_n, y_n, z_n, la sommatoria venendo estesa a tutti gli atomi contenuti.
nella cella. Si sono anche ricalcolate colle stesse formule le intensità delle linee del Co_3O_4.

Si è supposto in tale calcolo delle intensità una struttura del tipo degli spinelli e si è assunto il parametro u, che definisce la posizione dell’atomo di ossigeno, uguale a 1/8.

La posizione degli atomi nella cella elementare risulta allora definita dalle coordinate:

- **Zn**
 \[
 \begin{array}{cccc}
 0 & 0 & 0 \\
 1/2 & 1/2 & 0 \\
 1/4 & 1/4 & 1/4 \\
 3/4 & 3/4 & 1/4 \\
 1/4 & 3/4 & 3/4 \\
 3/4 & 1/4 & 3/4 \\
 \end{array}
 \]

- **Co**
 \[
 \begin{array}{cccc}
 3/8 & 3/8 & 5/8 \\
 1/8 & 1/8 & 5/8 \\
 3/8 & 1/8 & 7/8 \\
 1/8 & 3/8 & 7/8 \\
 7/8 & 7/8 & 5/8 \\
 5/8 & 5/8 & 5/8 \\
 7/8 & 5/8 & 7/8 \\
 3/8 & 7/8 & 7/8 \\
 3/8 & 3/8 & 1/8 \\
 1/8 & 5/8 & 1/8 \\
 5/8 & 1/8 & 3/8 \\
 1/8 & 7/8 & 3/8 \\
 \end{array}
 \]

- **O**
 \[
 \begin{array}{cccc}
 3/8 & 3/8 & 1/8 \\
 1/8 & 1/8 & 1/8 \\
 3/8 & 1/8 & 3/8 \\
 1/8 & 3/8 & 3/8 \\
 7/8 & 7/8 & 1/8 \\
 3/8 & 5/8 & 1/8 \\
 7/8 & 5/8 & 3/8 \\
 3/8 & 7/8 & 3/8 \\
 3/8 & 3/8 & 5/8 \\
 1/8 & 5/8 & 5/8 \\
 3/8 & 5/8 & 7/8 \\
 1/8 & 7/8 & 7/8 \\
 3/8 & 7/8 & 7/8 \\
 5/8 & 1/8 & 7/8 \\
 5/8 & 3/8 & 7/8 \\
 1/8 & 7/8 & 5/8 \\
 3/8 & 5/8 & 3/8 \\
 1/8 & 5/8 & 3/8 \\
 3/8 & 7/8 & 3/8 \\
 3/8 & 5/8 & 1/8 \\
 1/8 & 7/8 & 1/8 \\
 3/8 & 3/8 & 3/8 \\
 \end{array}
 \]

I valori che così si calcolano per l’intensità sono abbastanza concordanti con quelli sperimentali e giustificano le leggere differenze di intensità nei due composti delle linee citate.

Dall’esame della cella elementare, osservando la distanza che intercede tra i centri dell’ione bivalente e dell’ossigeno si calcolano per i raggi ionici di questi dei valori un po’ inferiori a quelli che si calcolano dai reticoli degli ossidi semplici. Si avrebbe una migliore utilizzazione dello spazio reticolare, specialmente per il Co_3O_4, assumendo u leggermente diverso da 1/8.

Non si altererebbe così la simmetria cubica dello spinello e soltanto varierebbero leggermente le intensità delle linee dei fotogrammi, forse accordando meglio con quelli sperimentali. Il calcolo delle intensità per confermare quest’ipotesi, supponendo dei valori del parametro u diversi, per quanto molto vicini ad 1/8, risulterebbe eccessivamente laborioso, senza presentare uno speciale interesse ed è perciò stato tralasciato.

Siamo ora esaminando altri spinelli del cobalto, sui quali riferiremo in altra Nota. La preparazione del composto Ni Co_3O_4, con metodo analogo a quello impiegato per il Zn Co_3O_4, ha dato però risultati negativi. I fo-
togrammi presentano tanto le linee del Co$_2$O$_4$ quanto quelle del NiO, indicando che il prodotto è una miscela di questi. L'analisi ha fornito quantità di ossigeno attivo corrispondenti a quelle che si calcolerebbero per una miscela equimolecolare di Co$_2$O$_4$ e NiO.

Riassunto. È stato preparato il cobaltito di zinco, Zn Co$_2$O$_4$, per calcinazione di una miscela dei nitrati di zinco e di cobalto ed è stato esaminato coi raggi X col metodo delle polveri e confrontato col cobaltito cobalto Co$_2$O$_4$.

Il Co$_2$O$_4$ ed il Zn Co$_2$O$_4$ risultano isomorfi, cristallizzano entrambi nel sistema cubico, con un reticolo del tipo degli spinelli, hanno celle elementari di dimensioni identiche con lato di 8.06 Å ± 0.005, ed hanno densità calcolate rispettivamente di 6.11 e 6.27.